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INTRODUCTION 

Most rural electric power lines are single-phase. For 

many years, single-phase lines have served admirably as a 

means of utilizing incandescent lighting and single-phase 

appliances. But farms in the United States have been growing 

steadily larger. A report, prepared by the Iowa Crop and 

Livestock Reporting Service shows 135,264 farms in Iowa in 

1970, 1340 fewer than in 1969 and 5,583 less than in 1965. 

Larger farms broaden the scope of farm operations and make 

necessary more use of electric power. 

The population census showed a 16,000 drop in farm pop­

ulation in the State of Iowa in 1969, and a drop of 6,641 in 

1970. According to the U. S. Statistical Abstract, it is 

estimated that by 1980 we can expect about 2 million farms in 

this country, 800,000 fewer than the latest census figure, 

2.8 million in 1972. The reduction in manual labor available 

on farms makes it necessary that machines be available to do 

the farm operations faster and at a lower cost. A higher 

profit with less effort being a part of modernization, it is 

not unreasonable to predict that the trend towards mechaniza­

tion of farms as well as need for larger motors on the farm­

stead will continue. 

To meet the need for larger motors, three-phase motors 

are the ideal type. There are several reasons for the choice 

of three-phase motors. Three-phase motors generally are 
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readily available and provide a wide choice of performance 

characteristics. They are smaller, lighter, and simpler in 

construction than single-phase motors. Single-phase motors 

are higher in initial cost than three-phase motors in 

integral horsepower sizes, particularly for motors larger 

than 3 hp. Single-phase motors, because of starting windings 

and switching devices, also require more maintenance. Most 

manufacturers do not offer single-phase motors above 10 hp. 

Perhaps of more importance, single-phase motors require 

a starting inrush current 2 to 3 times higher than the same 

size three-phase motors, and thus limits the size of motors 

permissible on many single-phase lines. For example, most 

7.5 hp single-phase, 230 volt, 60 motors have a name 

plate rating of about 40 amperes at full load and require an 

inrush current over 200 amperes. A three-phase motor of 

similar hp and voltage rating requires about 20 amperes at 

full load and 100 amperes at starting (33, 72). 

Three-phase service, a preferable power source to op­

erate three-phase motors, is readily available to only a 

small percentage of farms, except for some areas of the west 

coast where irrigation is necessary for farming. Most rural 

lines are single-phase because three-phase service normally 

requires a greater investment in transformers and lines, 

which is not always profitable because most of the farms 

have low annual energy consumption and poor load factor. 

Feedlot equipment is operated only for an hour or two per day; 
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drying systems may be operated for only a few weeks per year; 

and irrigation systems may be used for a few days to several 

weeks per season (23). 

As a result of an increase in the number of large crop-

drying, large feeding and irrigation systems on farms, motors 

have become larger, with 10 to 20 hp becoming common. For 

example, crop drying systems matched to picker-sheller harvest 

rates may require 15, 20 hp and even larger motors. To meet 

this demand for larger electric motors, without requiring 

the installation of three-phase service, phase converters 

have offered a solution for some farmers and power suppliers. 

A phase converter is a device that permits the use of 

three-phase motors from a single-phase power source. The 

application of a phase converter operated three-phase motor 

is recommended in the following situations (22, 86, 87, 88). 

1) When the cost of extending three-phase power is 

relatively high and the annual energy consumption is rela­

tively low. 

2) When the customer has to pay the cost for the exten­

sion of three-phase service. For example, Baebler reported 

(5) that 

"one power company serves its customers under 
a residential ra,te which provides a single-
phase service as standard. The company will 
extend the three-phase service irrespective 
of the amount of connected load provided the 
customer pays for the non standard facilities". 
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3) When the rate structure is higher for three-phase 

service than for single-phase service. 

4) When the hp of motor needed exceeds the largest size 

allowed by the power supplier because of the limitation on 

inrush currents with across-the-line starting. Some power 

suppliers have set inrush current limitations on the basis of 

the ASAE rural motor starting application guide (90, 95): 

"Single-phase motors shall be permitted 
on a distribution system if the designed 
locked-rotor current at 230 volts is no 
more than 260 amperes and if no more than 
260 amperes at any time during the starting 
cycle". 

and also "Phase converters supplying three phase motors 
shall be permitted anywhere on a system if the 
design inrush current to the phase converter 
does not exceed 260 amperes at 230 volts". 

These guidelines limit the single-phase motor's size to 

about 7.5 hp, however, a phase converter operated, three-

phase, 20 hp motor with an inrush current of approximately 

200 amperes may be used without violating the recommendations. 

5) When a three-phase power supply is expected to re­

place the existing single-phase lines in the near future, the 

customer can plan for the future and purchase three-phase 

motors and, with the help of phase converters, can operate 

them from a single-phase supply until the three-phase service 

is installed. 

6) When equipment has a three-phase motor as an integ­

ral part of the unit, and replacement of the three-phase motor 
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by a single-phase motor is not feasible. Examples are some 

irrigation pumps and floating lagoon pumps. 

Phase converter three-phase motor combinations are 

being used to operate many types of fam loads. In a study 

conducted by the Edison Electric Institute it was found that 

50 of the 88 power companies surveyed are serving some kind 

of phase conversion equipment on their lines (79). The num­

ber of units connected to a single company's lines ranged 

from 1 to 200. The largest three-phase motor operating in 

conjunction with a phase converter was a 75 hp motor. The 

most common ratings reported, however, were 15, 20, and 25 hp. 

Some of the typical applications of phase converter operated 

motors reported in the study are listed below: 

1. Grain dryers (15 and 20 hp motors) 

2. Irrigation pumps (10, 25, and 50 hp motors) 

3. Feed mills. Hammer mills (25 and 40 hp motors) 

4. Fertilizer mixers 

5. Silo unloaders 

6. Cattle-feeding systems (15 hp and larger motors) 

7. Deep well pumps 

8. Air compressors (5, 10, and 15 hp motors) 

9. Air conditioners 

10. Power tools - power saws, turret lathe. 

Phase converters, when properly selected, installed, and 

maintained, have satisfactorily operated three-phase motors 
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from single-phase lines. In many cases, however, because 

of the wide variations in the design of phase converters 

available and a lack of knowledge for their application, 

some power suppliers have discouraged the use of phase con­

verters on their lines. The author believes that much 

improvement and greater knowledge of the design and applica­

tions are needed to eliminate the difficulties in the use of 

phase converters for farm loads. 



REVIEW OF LITERATURE 

Phase converters have been in use for several decades. 

According to Robert Cotanch (4) the first phase converter 

was invented more than 60 years ago. Much of the improve­

ment and development was accomplished in the 1960's. Im­

proved performance of phase converters has resulted in 

steadily increasing applications. Also, strong efforts by 

the power supplier to serve the farmer's need for larger 

motors in the most economical way possible, has accelerated 

the demand and subsequently improved reliability of phase 

conversion systems. 

In a wider sense, any device permitting the conversion 

of a m-phase system into a n-phase system may be properly 

called a phase converter. This would include, for example, 

a Scott transformer used for converting two-phase into three 

phase currents or vice versa. A rotary converter for conver 

sion of three-phase current into 6, 9, or 12-phase current 

is also an example of phase converters. Even the choking 

coil and condensers which for starting purposes split the 

phase for feeding the auxiliary winding of a single-phase 

motor could be called a phase converter. 

According to the definition in text books, a phase con­

verter is a machine that converts power from an a.c. system 

of one or more phases to an a.c. system of a different num­

ber of phases, both systems of the same frequency. Most 
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common applications of phase converters are limited to the 

conversion of single-phase power to three-phase power. In 

this study, phase converters in a narrow sense will be con­

sidered a device that permits the use of a three-phase 

induction motor on a single-phase power source. 

Originally phase converters (rotary type) were used to 

electrify railways where locomotives equipped with three-

phase motors received power from a single-phase source. An 

early phase converter used on railways, shown in Figure 1, 

was designed and operated upon the principle that a single-

phase induction motor develops a rotating magnetic field 

(64). If the motor were to run at synchronous speed, the 

magnetic field would not only rotate uniformly at synchronous 

speed, but its magnitude would also remain constant. There­

fore, if the stator of a single-phase induction motor is 

designed with an auxiliary winding placed in slots, symmet­

rically spaced midway between the slots of the main winding, 

the auxiliary winding will become the source of an induced 

voltage. This voltage is in time quadrature with the 

supply voltage. 

As illustrated in Figur- 1, the main stator of the 

induction motor was supplied from a step-down transformer 

which reduced the voltage to a value suitable for the motor. 

The auxiliary winding was designed to develop a voltage 

equal to 86.6 per cent of the secondary voltage of the 
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Figure 1. Phase converter used on railways (64) 

transformer. Thus, by the use of Scott connections the 

original single-phase line is connected to supply power to 

a three-phase circuit (64, 112). 

Commercially available phase converters are of two basic 

types : 

1. Static phase converters 

2. Rotary phase converters 

Static phase converters can further be subdivided as; 

1. Capacitor type 

2. Open-wye capacitor type 

3. Autotransformer-capacitor type 

4. New designs. 

A great number of reports have been published on the 

performance and applications of static as well as rotary 

phase converters. In this research project, the published 

literature that related directly or indirectly to the under­

standing of phase converters was reviewed. A brief resume 
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is presented of a few pertinent articles on the various types 

of phase converters. 

Static Phase Converters 

Static phase converters, as the name implies, have no 

moving parts other than switching relays which operate during 

the starting of the three-phase motor. 

Capacitor type 

This is also called a capacitor-only phase converter. 

It is the least expensive and simplest kind of converter. 

Figure 2 is a simplified diagram of a capacitor type phase 

converter. Two of the three-phase motor leads are connected 

directly to the single-phase line. The third lead of the 

motor is connected to one of the single-phase through a bank 

of oil capacitors. The capacitors shift the phase of the 

voltage to the third winding. The phase-shifted voltage in 

combination with the physical position of the motor windings, 

produces the rotating magnetic field to start and run the 

motor (94). 

A motor operated on a capacitor type converter normally 

would not be used at full horsepower rating because current 

unbalances will overheat the motor for other than a short 

period of operation. According to Soderholm (92, 94), 

capacitor type converters require that loading of the motor 

be limited to 75 per cent of the normal horsepower rating 
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Converter 

Single-phase 

power 

Three-phase 

motor 

bank Capaci 
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Figure 2. Capacitor-only phase converter. 

of the motor. Figure 3 illustrates the variations in line 

currents with respect to load on the motor. Test data from 

a 10 hp, NEMA design B motor and capacitor type converter 

showed that current in one phase of the motor exceeded its 

rated value when the load exceeded 70 per cent of rated load. 

m  

Figure 3. Line currents vs. load on the motor (92). 
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Satisfactory operation of a capacitor-only converter is 

limited to low starting torque and constant loads. Ager (1), 

in studying the use of auxiliary impedances in the single-

phase operation of polyphase induction machines, concluded 

that no appropriate value of impedance can be found that will 

give polyphase performance for more than a single load. He 

stated several benefits of using capacitors, but, according 

to him, these capacitors do not make single-phase performance 

of the motor equivalent to the polyphase through out the 

range of normal operation. 

Bakes (6) found that a capacitor type phase converter 

operated motor could not be loaded beyond the motor rating 

without causing severe motor unbalance, excessive vibration, 

noise and overheating. He also found that the starting 

torque of a converter operated motor is 70% less than that 

of a single-phase repulsion induction motor of the same 

horsepower rating. Like many research reports, Bake's study 

suggests that capacitor-only phase converter operated three-

phase motors are not suitable for loads that require high 

starting torque, such as a high pressure compressor. These 

converters, however, are being used satisfactorily to power 

small ventilating fans, blowers, and power saws. 

In 1953, Haberman (38) studied a capacitor type phase 

converter operating a 5 hp, three-phase induction motor. 

He concluded that the proper rating of a three-phase motor 
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with such a phase converter is not more than: 

1. Sixty per cent of the three-phase rating if the 

standard per cent locked rotor torque and break 

down torque are required. 

2. Sixty to seventy per cent of the three-phase 

rating if no more than a ten per cent higher 

temperature rise is to be tolerated. 

He suggested that for the highest obtainable locked rotor 

and running torques, the capacitors should be sized at 200 

pF for starting and 26.5 yF for running per motor horsepower. 

Hogan (44) from his theoretical analysis of capacitor 

type converters found that a three-phase motor operated from 

this type of converter can be balanced only if the power 

factor of the motor is held at 50 per cent. 

According to Brown et al. (14, 15, 17), a perfect 

balance of a three-phase induction motor operating from a 

capacitor type converter can be realized only when the 

negative sequence component of the motor voltage is zero. 

This is possible only when the phase angle of the machine is 

less than 30^. Thus the power factor should not exceed 

0.866 for an exactly balanced condition. When, as usually 

happens, power factor is better than 0.866, the negative 

sequence voltage is minimum but different than zero. 

In comparison with straight single-phase steady state 

operation of a three-phase motor, the addition of appropriate 
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balancing capacitors at the normal running speed results in 

significant reduction in copper losses and a modest improve­

ment in the torque. 

Open-wye capacitor type 

In 1957/ Henry Steelman was the first to obtain patent 

rights on open-wye type capacitor converters (41). This 

converter, like capacitor-only converters, does not convert 

single-phase electrical service to three-phase, however, it 

does make it possible to operate a three-phase induction 

motor on single-phase service. 

Each unit needs to be matched to the horsepower rating 

of a standard, dual voltage, single-speed, three-phase motor 

As shown in Figure 4, it is necessary to pull out three 

additional leads on the motor making it a 12-lead motor. 

For proper connection, phase C is isolated from phase A and 

B. With the modified connection, windings are virtually the 

same as in a two-phase motor with the A and B phases con­

stituting one winding and the C phase constituting a second 

winding 90° out of phase therewith. The path formed by the 

combination of A and B phases, since it includes parallel 

connections, is of lower resistance and higher inductance 

than the path formed by phage C in series with the capacitor 

bank. 

Figure 4 illustrates the low voltage connections of the 

phase conversion system using parallel connections on the 
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motor winding. For the higher voltage operation of a 

motor, the phase windings should be connected in series. 

CONVERTER . 

SINGLE-PHASE 

POWER 

CAPACITOR 
BANK 

_ J 

Figure 4. Open-wye type phase converter. 

Phases A and B of the motor have the usual single-phase 

voltage applied. Phase C in series with capacitors has an 

effective voltage of 130 volts applied (32). The line cur­

rent is the vector sum of currents in phase A B and phase C, 

which is much less than their arithmetical sum. Therefore, 

the volt-amperes drawn from the supply line are less than 

would be drawn by a two-phase motor. A motor connected as 

shown in Figure 4 will operate under a steady load with nearly 

the same efficiency as that of a two-phase motor and with 

higher torque, much better power factor, and substantially 

less current (41). 
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The KVAR of a capacitor on 60 power supply can be 

expressed by the following relationship ; 

KVAR = 0.377 (KV)2 C (1) 

where KV is voltage drop across the capacitor and C is 

capacitance in microfarads. From Equation 1, the effective 

KVAR of a fixed capacitor is increased when the voltage drop 

across its terminal increases. According to Elliot and 

Elliot (31), the compensation effect of the capacitors in the 

circuit allows a fixed quantity of capacitance to be used 

and eliminates the "phase balancing" common to other types 

of static phase converters. 

To gain more starting torque from the motor, electro­

lytic capacitors should be connected across the oil capacitor 

bank. These additional capacitors must be removed from the 

circuit when the motor reaches its rated speed. This can be 

accomplished by a N.C. time delay relay or a voltage sensing 

relay. 

A few examples of the successful applications of open-

wye type capacitor converters given in (32) are irrigation 

pumps, oil wells, centrifugal pumps, compressors, hydraulic 

pumps, hammer mills, feed mixers, grain dryers, punch 

presses and a 100 hp rock crushing mill. 

This type of phase converter is not recommended for over­

loaded motors and for rapidly and widely fluctuating load 

applications. 
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Autotransformer-capacitor type 

The autotransformer-capacitor phase converter is an 

improvement over the capacitor-only type converter. This 

type of converter is of the same basic design as the capac­

itor type converter. The major difference is the addition 

of an autotransformer that allows the operation of a motor 

at full horsepower output (94). 

A simplified diagram of an autotransformer-capacitor 

converter is shown in Figure 5. Hogan (44) referred to the 

autotransformer converter as an "add-a-phase" converter. 

According to him, this type of converter adds a phase to the 

already present single-phase. Through the combination of 

transformer, capacitor and impedance of the motor, a third 

phase is introduced whose relation to the other two phases 

comprises symmetrical three-phase power (86) . 

Autotransformer-capacitor converters have been used to 

operate 1 to 100 horsepower three-phase motors. In any 

case it is not recommended that an autotransformer-capacitor 

type converter be used to operate a motor larger than the 

rating of the converter (86). 

According to Ronk (87), the autotransformer-capacitor 

converter has overcome all of the shortcomings of the capac­

itor-only and open-wye type converters. A three-phase motor 

with this converter can be made to produce about the same 

locked-rotor and pull-up torque as the three-phase motor on 
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Figure 5. Autotransformer-capacitor phase converter. 

three-phase line power. The autotransformer and running 

capacitors during the starting cycle cause a voltage rise. 

This voltage rise, in most cases, will offset the voltage 

drop caused by the inrush current of the motor. Ronk (87) 

reported that an autotransformer converter operated motor can 

produce 225% locked-rotor torque, 175 to 190% pull-up torque 

and up to 250% breakdown torque. 

According to Ruber, a squirrel cage, three-phase, 4-

pole NEMA design A or B motor should develop a minimum of 

165% full load torque. When such a motor is connected to an 

autotransformer-capacitor converter, the motor's locked rotor 

torque will be somewhat decreased, usually 10 to 25% 

depending upon the amount of starting capacitance used in the 

converter. Similarly, breakdown torque is reduced from 200% 

to 150% full load torque (47). 
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Huber also reported that for a three-phase motor 

requiring a starting current of six times the running cur­

rent, the use of a phase converter will reduce the starting 

current to approximately three times the running current (47). 

The starting current of a motor on an autotransformer-capac­

itor phase converter ranges from 2.5 to 3 times the rated 

full load current (86). The single-phase starting amperes 

on the 230-volt line are found to be approximately 12 ampere 

per horsepower. Hogan (45) found that starting KVA of an 

autotransformer converter is much less than that of a single-

phase motor on a single-phase line or a three-phase motor on 

a balanced three-phase power source. 

Line currents for a motor used on this type of phase 

converter over a range of motor loads, as found by Soderholm 

and Charity (94) are shown in Figure 6. Taps on the autotrans-

former allow for adjustment of the voltage for different motor 

characteristics and loads. The transformer voltage and the 

capacitance in the oil capacitors can be adjusted to provide 

balanced phase currents at full load (52). 

Several motors may be operated from an autotransformer-

capacitor converter, if at least 75% of the connected load is 

in operation at any one time. This means that 75% of the 

load must start and stop simultaneously (51). This is 

important because the current unbalance is higher at loads 

less than full load. Huber has shown in Figure 7 that the 
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Figure 6. Line current vs. load on an autotransformer-
capacitor converter operated three-phase 
T-frame motor (94) . 

greatest unbalance in line currents occurs when the motor 

is running under no load conditions (49). 

Hogan (44, 45, 46) developed the following two equations 

for determining the value of the capacitors and the trans­

former ratio needed for the given motor and load. 

^c = l 
ÏÏ11 

Cos (0„. + 30) 

where = capacitive reactance 

Z . = positive-sequence impedance per phase of 
the induction motor. 
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0 . = positive-sequence power factor angle of the 
motor 

N - transformer tu^n ratio 
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Figure 7. Typical line currents vs. load on the autotrans-
former-capacitor phase converter operated motor 
(49). 

The use of Equations 2 and 3 requires values of and 9^^ . 

In many cases these may not be easy to obtain. Equation 3 

indicates that as the load changes, the phase angle of the 

motor will change and the motor will no longer have exactly 

balanced currents. It is, therefore, important to adjust 

initially the value of N and so as to give balanced opera­

tion for the particular load conditions most usually encount­

ered. 

The most common applications of autotransformer-capaci-

tor converters on farms are for three-phase motors on irriga­

tion pumps, material handling augers, grain dryers, etc. 
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This type of converter is also being used for air condi­

tioners and oil well pumps. Power consumption of a 25 hp 

motor and autotransformer-capacitor phase converter in 

filling a 20* x 60* silo with corn silage was found to be 

approximately 1.5 KWhr per ton (13). Harisha (39) reported 

a successful application of a 75 hp, 480-volt motor and an 

autotransformer-capacitor converter on an irrigation pump. 

Single-phase inrush current was 340 amperes and full load 

current was 150 amperes. Running currents for the 75 hp 

three-phase motor were 88/ 88, and 95 ampere. 

Parvis (77) and Price (81) , in a survey of farm loads, 

found numerous installations where autotransformer-capacitor 

type phase converters have been in regular use. The majority 

of the operators were reported to be fairly satisfied by the 

performance of the units. They found that in many applica­

tions, the size of the heater coil in the magnetic motor 

starter had to be increased. 

Brooks (11) reported a multi-motor application of 

an autotransformer-capacitor converter. The converter rated 

at 30 hp was being used for a 20 hp blower motor and a 10 hp 

elevator motor at a city incinerator. The equipment had been 

in service for five years and was used 50 hours per week. 

Manufacturer's literature and the findings of several 

studies do not recommend the use of autotransformer-capacitor 

converters for multispeed and variable speed motor applica­

tions (11, 28, 39, 86). 
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New designs 

There have been continuous efforts by manufacturers and 

researchers to improve the design of static phase converters 

so that they can provide a balanced output voltage for a 

wider range of loads. A variety of proposals have been made 

for phase converter systems that are different in basic 

design from conventional systems. A few of these are 

described briefly in this section. 

Buffington (19) has proposed a static phase converter 

shown in Figure 8. The primary of transformer A is ad­

justed to provide greater control and stability of output 

voltage. The secondary windings of both transformers con­

nected in series with oil capacitors act as a feed back 

loop. According to Buffington this design of static phase 

converter will adjust itself to variations in load and pro­

vide nearly balanced three-phase voltage over a wider range 

of loads than possible with current static type converters. 

Lewus (58) suggested the use of a current balancing 

reactor to improve the performance of capacitor-only phase 

converters. As shown in Figure 9, a reactor is connected 

across terminals T^ and T^ of the motor. The reactor is 

designed to provide relatively high reactance to resistance 

ratio and is preferably operated near the saturation level 

of the core. The core is usually made from high permeability 

steel laminations. It is reported that, by the use of a 



24 

current balancing reactor, phase relation between the phase 

currents in the motor is greatly improved. 

Single-phas 

input TRANSFORMERS 

Secondary 3-Phase 

Motor 

prm 

Figure 8. Static phase converter of Buffington (19). 

CAPACITOR 

L 
1 

3-Phase 
Wye-connected 

motor 

REACTOR 

L 2 

Figure 9. Lewus phase converter with a current balancing 
reactor. 
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When a three-phase ferroresonance circuit is operated 

from a single-phase source, the jump phenomenon of the fund­

amental frequency voltage occurs. Based on this principle, 

Tadokoro (103), and Tanno (104, 105) constructed a phase 

conversion system shown in Figure 10. VThen a single-phase 

voltage is applied to the terminals and Lg f flux jump 

occurs in the center leg of the core and, as a result, volt­

ages of different phases (a three-phase voltage) are ob­

tained at terminals Tg and T^. In these papers authors 

Three-phase 
output 

SINGLE-PHASE 

INPUT 

Figure 10. Fundamental circuit of a three-phase fer­
roresonance phase converter (103). 
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have described in great detail the theoretical analysis of 

the circuit used in the device. No experimental data was 

reported and the device has not been tested to supply power 

to three-phase motors (103, 104, 105). 

Bessho (9, 10) constructed a 5 KVA static phase con­

verter using a ferroresonance silicon iron core. The core 

consisted of a leakage-flux path between the input and out­

put windings. The device was made of two parallel fer­

roresonance circuits connected in series. He found that 

this type of phase converter performed effectively as a 

voltage regulator, however, its application to supply three-

phase power to motor loads was not satisfactory. 

Hisano et al. (43) modified the circuit proposed by 

Bessho and called it a voltano converter. A simplified 

wiring diagram is shown in Figure 11. The voltano converter 

consists of a three-phase saturable reactor with windings 

wound on a 3-legged core. A capacitor C acts as a fer-

roresonant capacitance. 

Hisano et al. (43) studied the effects of variation in 

load, source voltage, power factor, and various core material 

on the three-phase output voltage. A graph of output voltage 

at various loads was presented in the report. Hisano con­

cluded that a voltano converter W9,s approximately 90% effi­

cient and can supply fairly well-balanced three-phase output. 
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Single-phase 
input 

mm 

mm 

Three-phase 
output 

Figure 11. Simplified circuit diagram of the voltano single-
phase to three-phase converter. 

Rotary Phase Converter 

As the name implies, a rotary phase converter consists 

of a rotating unit. Physically, it resembles an induction 

motor with rotor and stator but with no external shaft. The 

unit has an additional enclosure containing capacitors. 

This type of phase converter has been given various names by 

different manufacturers; such as, phase generator, rotary 

transformer, rotoverter, roto-phase, and a self-driven 

generator. 

Professor Arno was the first to propose the use of a 

three-phase induction motor as a phase converter (66). 
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In the 1900's, he discovered that once an induction motor is 

started across a single-phase line and allowed to run idle, 

it can serve as a source of three-phase power for additional 

three-phase motors. He called the first motor a pilot motor. 

An induction motor with a phase splitting reactor, for 

starting purposes, was known as a Ferraris-Arno phase con­

version system. Figure 12 is a diagram showing the essential 

connections of the Ferraris-Arno phase converter. 

Single-phase 

Pilot motor 

•T^ vT. Three-phase 

Figure 12. Connections of Ferraris-Arno phase converter. 

An ordinary three-phase induction motor can be used as 

a phase converter only if the electrical load is small and 

considerable voltage unbalance can be tolerated. To reduce 

the voltage unbalance the motor must be designed for low 

leakage reactance with open and shallow slots and a few 

number of turns per slot (97). 
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Figure 13 shows a simplified diagram of the rotary con­

verter. Two of the three rotary converter terminals are 

connected directly to the single-phase power lines. The 

third terminal of the rotary converter is connected to one of 

the single-phase lines through capacitors. The capacitors 

provide the rotating magnetic field to start the converter. 

The generating action of the rotary converter, in combination 

with the phase shift of the capacitor, produces the third 

phase voltage to operate a three-phase motor (22). 

Converter 

Single-

phase 

power 

Three-phase 

motor 

I Capacitor bank , 

Figure 13. Rotary phase converter. 

According to Cotanch (4) a "rotary converter" is not a 

converter at all. More accurately it is a "phase generator". 

One phase is generated by the rotary unit and oil capacitors 

and the other two phases are supplied from the single-phase 

source. The rotary converter also receives energy from the 

same source. With the rotary unit energized, three distinct 
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phases and voltages are produced at the terminals. Hence, 

any three-phase load within the rating of the stator winding 

of the motor can be handled whether it is inductive or 

resistive or any combination (4). 

For the operation of several motors from one converter, 

the rotary converter is usually the best choice. One motor, 

or any combination of motors may be operated, provided the 

total horsepower load, or amperage drawn is no larger than 

the continuous load rating of the converter. Also, one motor 

or any combination of motors may be started at the same time 

as long as the sum of the total horsepower of the motors 

starting does not exceed the rated starting horsepower of 

the rotary converter (4). 

To place a rotary converter in operation all three-phase 

motors must be disconnected. When the rotary converter is 

started and full speed has been obtained the various three-

phase motors are then connected as required. Each of the 

motors operated on the rotary converter has a separate 

capacitor panel. On starting a motor, its capacitor panel 

should be connected across the same phases as the main capac­

itor bank in the basic unit (47). 

In many cases, the largest motor to be operated is the 

main factor in determining the size of the rotary converter 

and main capacitor bank. If the largest motor is driving a 

high starting torque load a rotary converter larger than 

normal size should be selected (4). 
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The starting current of a rotary converter may be as 

large or larger than the current drawn when the largest 

permitted size three-phase motor is started on the converter 

(22). Inrush current of a converter is, however, usually 

less than that of a three-phase motor of the same size 

starting on three-phase line power or a single-phase motor 

starting on a single-phase source. Single-phase inrush cur­

rent of a 20 hp converter is about the same as that of a 7.5 

hp single-phase motor (4). 

Even with a carefully matched motor and rotary con­

verter, currents are always somewhat unbalanced, because of 

the variations in their internal parameters, resistance, 

reactance, and core losses. The unbalance of currents is 

rapidly magnified when the motor is overloaded. Soderholm 

(92), from a study of various brands of phase converters, 

found that performance characteristics of rotary phase con­

verters vary widely depending upon the design. Figure 14 

shows the phase current variations in a motor operated on a 

rotary phase converter over a range of motor loads (94). 

To avoid the possibilities of excessive unbalance in 

motor currents, several technical reports have recommended 

that motors should be oversized. Following are a few 

examples : 

"Motors must have horsepower ratings greater 
than or equal to their actual loads, over-
sizing of motors is desirable" (24). 
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"Care must be exercised in selecting the de­
sign and size of motors. One way to provide 
adequate starting torque is to use one size 
larger motor" (22). 

"In multi-motor installations using rotary con­
verters, motors should be oversized in order 
to compensate for current unbalance. A general 
rule for oversizing the motor would be to pro­
vide at least 25% excess capacity for unity 
service factor motors and 10% excess capacity 
on motors with 1.15 service factor" (78). 

Figure 14. Motor phase currents vs. load for a three-phase 
motor operated on a rotary phase converter (92). 

According to Spindler (96), one way to get increased 

torque is to use the next larger converter. In the case of 

5 hp air compressor, he suggested using a 10 hp converter. 

Locked-rotor torque of phase converter operated three-

phase motors is less than that available when a motor is 

started on three-phase line power. Applications which 
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require a high starting torque are not recommended for use 

with a rotary phase converter. The maximum motor starting 

torque required should be limited to approximately 100 to 

150% of full load torque (24). 

Charity and Soderholm (23) found that when one motor is 

fully loaded and running, the starting torque of a second 

motor is improved slightly. Locked rotor torque limitations 

can be increased somewhat for a specific motor by having 

other motors started but idling on the line before the higher 

locked rotor torque motor is started (24), According to 

Huber (47), as subsequent motors are started the starting 

torque will be increased since each motor in effect serves 

as a generator once the motor has acquired its full speed. 

Maggs et al. (67) have made similar observations. They have 

reported that the pilot motor (phase converter) as well as 

all additional motors running at any instant in combination 

act as phase converters. Voltage stability, as distinct from 

voltage balance, of the three-phase output increases with the 

number of motors running. 

Rotary phase converters under idle conditions will run 

considerably hotter than under load conditions. This is due 

to the greater "no load" unbalance in voltage and, therefore, 

large circulating currents. Under load, the voltages become 

more balanced and circulating currents and heating are 

reduced. Charity and Soderholm (23) have reported that the 

temperature rise in a wye wound motor operating from a 
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converter with a horsepower rating equal to that of the 

motor is about the same as would be experienced for the 

motor operating on three-phase line power. 

The power loss in rotary converters is higher than that 

in static converters. Patterson and Carroll (78) found that 

a 10 hp rotary converter had losses of 1.5 KW while the con­

verter was running whether loaded or not. A 15 hp rotary 

converter is reported to have a constant demand of 2.7 KW 

regardless of motor load (24) . According to Charity et al. 

(22), losses in an idling converter are higher than a 

loaded converter. They found that a.20 hp continuous rating 

converter required 1.72 KW input power to operate unloaded 

and 1.0 KW when loaded. Huber (51) found that leaving the 

rotary converter energized is not practical since the power 

loss in the converter is greatest when the load is not in 

operation. 

Applications of rotary phase converters include motors 

driving augers, bucket elevators, silo unloaders, hoists, 

fans, blowers, grain dryers, center pivot irrigation systems 

compressors, machine tools, corn shellers, and saw mills (12 

26, 29f 37, 78, 81). Reports show that rotary phase con­

verters have been successfully used on applications like 

computers, radio stations, rectifiers, SCR drives, electro­

magnets, grape presses, and resistance welders (4, 24) . 

These loads are not adaptable to any type of static phase 

converter. 
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Rotary phase converters are also suitable for multi-

speed motors. Either wye or delta connected motors can be 

operated from rotary phase converters (4, 88). 

Photographs of some of the commercially available phase 

converters are shown in Appendix B. Figures 77 through 80 

are for capacitor-only phase converters. Figures 81 throgh 

85 illustrate autotransformer-capacitor and rotary phase con­

verters. 
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OBJECTIVES 

A review of research literature revealed that phase 

converters have been in use for several decades. The re­

search papers published dealt with theoretical approaches 

made to develop analytical equations to predict the perfor­

mance of phase converter operated three-phase motors. In 

most cases, these equations are in terms of the motor's 

internal parameters and are of little practical use in 

adjusting a converter for balanced currents in a motor to 

run a given load. These equations are also very complicated 

and require a lengthy computational procedure. 

Most of the single-phase rural loads today experience 

a wide variation of voltage because of the power line char­

acteristics. There is a limited amount of information 

available on the effects of line voltage variation on phase 

converter performance. 

To develop design equations for phase converters that 

are simple and practicable and to provide needed information 

on phase converter applications, the objectives of the 

study are; 

1. To develop analytical equations to determine the 

value of capacitance bank and the transformer turns-

ratio of autotransformer-capacitor type phase con­

verter for balanced currents of a three-phase motor 

for a given load. The accuracy of the analytical 
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equations will be verified with experimental 

data. 

To optimize the size of capacitors and autotrans-

former turns-ratio for the best results with 

varying motor loads. 

To determine the effects of variations in single-

phase line voltage on the performance of three-

phase motors operating on an autotransformer-

capacitor and rotary phase converters. 

To determine the current values and winding 

temperature rise in three-phase U-frame and T-

frame motors with unbalanced three-phase voltages 

at the terminals of the motors. 

To study the performance characteristics of three-

phase motors operating from an open-wye type phase 

converter. 

To determine the optimum value of starting capaci­

tance for the maximum locked rotor torque of motors 

operated from an autotransformer capacitor type 

phase converter. 

To develop a design procedure for power service 

for phase converters and associated three-phase 

motors and to verify the theoretical equation for 

determining phase converter ampere load by experi­

mental data. 
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MEASUREMENTS AND PROCEDURES 

• The research lab was equipped with single-phase and 

three-phase power supplies. The wiring circuits needed for 

the testing of motors were added to the load side of the 

main disconnects. 

Instruments were required for the following three types 

of measurements: 

1. Electrical measurements for voltage, current, power, 

and power factor. 

2. Torque measurements for locked rotor torque and 

the dynamic torque-speed curves of the test motor. 

3. Temperature measurements for estimates of the hot-

spot temperature in the windings of the motors. 

Electrical 

The voltage regulation circuits for single-phase and 

three-phase power are shown in Figure 15. A variac was con­

nected across the line to line voltage. The voltage at the 

adjustable tap of the variac fed the primary of a low turns-

ratio transformer. The secondary winding of the transformer, 

a source of voltage, was connected in series with the line 

voltage. By reversing the polapity on the primary winding, 

transformers were used to buck or boost the line voltage. 

The magnitude of the secondary voltage was varied by adjust­

ing the tap on the variac. 
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Figure 15. Regulation of line voltage with variacs and 
transformers. 

For the tests conducted in this study both source volt­

ages, single-phase and three-phase,were not required to be 

regulated simultaneously. Two variacs and two transformers 

were used for the regulation of three-phase line voltage. 

When three-phase power was not needed, one of the two variacs 

and transformers were disconnected from the three-phase line 

and were used to supply regulated single-phase voltage for 

the phase converter. To eliminate rewiring of the variac and 

transformer from three-phase to single-phase and vice versa, 

two TPDT switches were used. The circuit arrangement used 

for three-phase and single-phase power is shown in Figure 16. 
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Figure 16. Wiring diagram for the regulation of single-phase and three-phase 
voltages. 
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Regulated single-phase voltage was provided when switches 1 

and 2 were in the "UP" position. VVhen switches 1 and 2 

were in the "DOWN" position, the single-phase line was dis­

connected and the circuit was changed to regulated three-

phase voltages for three-phase testing of the motors. 

A schematic diagram of the metering arrangement is 

shown in Figure 17. The instruments are voltmeters, ammeters, 

wattmeters, and power factor meters. Description of meters, 

motors, and phase converters is given in Appendix A. Current 

transformers were used to measure the line currents of the 

motor. A bypass switch, 4, protected the ammeters and watt­

meters from being damaged by the high inrush currents at 

motor starting. A TPDT switch allowed the use of the same 

meters, without any rewiring, for measurements in tests on 

three-phase line power and on three-phase power supply from 

the phase converters. Pictorial views of the dynamometer 

and metering arrangement are shown in Figures 18 and 19. 

Torque 

A block diagram of the instruments used in measuring 

locked rotor torque and for plotting dynamic torque-speed 

curves of motors is shown in Figure 20. The major components 

are a strain guage reaction torque table, a signal condi­

tioning unit (transducer amplifier), a digital to analog con^ 

verter (frequency meter), an X-Y recorder, and a D.C. 

dynamometer. 
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Figure 17. Schematic diagram of the metering arrangement used for electrical 
measurements. 
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The test motor, as shown in Figure 18, was mounted on 

the reaction torque table. When the test motor was loaded 

with the dynamometer, a signal from the strain guage bridge 

in the reaction torque table, proportional to the torque of 

the motor, was fed to a signal conditioning device. The 

torque signal was amplified to a level that was suitable 

for the X-Y recorder. 

The speed sensing device, an electromagnetic pickup, 

consisted of a 60-tooth gear mounted on the shaft. By inter 

rupting the magnetic field sixty pulses were generated for 

each shaft revolution, thus, number of pulses varied 

directly with speed. Pulse signals were fed to a frequency 

meter, a digital to analog conversion device. The D.C. 

signal of the frequency meter was proportional to the speed 

of the motor shaft. 

When the two signals, torque signal from the trans­

ducer amplifier and speed signal from the frequency meter, 

were fed to the X and Y axis of a recorder simultaneously, 

a dynamic torque-speed curve of the test motor was obtained. 

Figure 21 shows a typical torque-speed curve of a 10 horse­

power, NEMA design B, three-phase motor operated on a 230 

volt, three-phase power supply. 

The locked rotor torque was obtained by locking the 

shaft of the motor. With the voltage regulation circuits 

the line voltage was raised to compensate for the drop due 
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Figure 18. Test motor setup, 1. 5 hp motor, 2. dynamometer, 
3. frequency meter, 4. temperature recorder, 
5. reaction torque table. 

Figure 19. Switching and metering equipment for V, I, KW, 
and PF measurements. 
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Figure 20. A block diagram of the instruments used in 
torque measurements. 
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Figure 21. A typical torque-speed curve for a 10 hp NEMA 
design B, T-frame, three-phase motor. 

to high inrush current. The motor under locked rotor con­

ditions, because of the high inrush current, heats up very 

rapidly. The locked rotor torque of a motor is reduced 

when motor windings are hot. After taking a locked rotor 

torque measurement, to avoid nonrepresentative readings due 

to the higher temperature of the winding, the motor was 

allowed to attain room temperature before the ne%t reading 

was taken. 
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Temperature 

A thermo-conductive body, developing heat at a con­

stant rate, will have a maximum temperature rise directly 

proportional to the heat developed in unit time and inversely 

proportional to the dissipation per degree rise per second. 

In an induction motor, from a cold start to the final steady 

state, the temperature rises exponentially with time. 

An electric motor comprises several parts, each with a 

characteristic surface area, mass, heat capacity, and thermal 

conductivity. The temperature rise of different parts, or 

even of various points within the same part, may be very 

uneven. Therefore, it is necessary to make estimates of 

hot-spot temperatures of motor windings. 

Several methods have been suggested to measure the 

temperature rise of electric motors (3, 33, 72, 106). Resis­

tance and embedded thermocouple methods were applied to 

estimate the hot-spot temperature of the motors tested for 

this study. These two methods give different bases for 

estimating hot-spot temperature. Table 1 shows the maximum 

allowable temperature and temperature-rise of various 

classes of insulations determined by resistance and embedded 

thermocouple methods (72). 

Resistance method 

The resistance method gives the average temperature of 

the stator winding. The temperature is determined by 
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Table 1. Temperature limits (°C) for A-C motors 1500 hp or 
below (72). 

Temperature measured by resistance method 

Insulation class 

Temperature rise 
Ambient 

Total observable 
Hot spot allowance 

A B 

60(108)^ 80C144). 
40(104) 40(104) 

100(212) 120(248) 
5( 9) 10( 18) 

105(189) 
40(104) 

145(293) 
10 ( 18) 

Insulation class 

Temperature rise 
Ambient 

Total observable 

Hot spot allowance 

Total temperature 

70(126) 
40(104) 

110(230) 

0 (  0 )  

B 

90(162) 
40(104) 

130 (266) 

0 (  0 )  

H 

125 (225) 
40(104) 

165(329) 
15 ( 27) 

Total temperature 105(221) 130(266) 155(311) 180(356) 

Temperature measured by embedded thermocouples 

115(207) 
40(104) 

155(311) 

0 (  0 )  

H 

140(252) 
40(104) 

180(356) 

0 (  0 )  

110(230) 130(266) 155(311) 180(356) 

^Numbers in parentheses are temperature °F 

comparing winding resistance at the test condition to that 

measured when the entire motor was at a known temperature, 

preferably room temperature. A formula given in Equation 4 

was used to estimate the winding temperature (106). 

Th = R- (K + ?=) - K 
c 

(4) 

where T, - average hot temperature C 
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= average cold temperature °C 

= hot resistance, ohms 

= cold resistance, ohms 

K = constant; for copper, K = 234.5 and for 
aluminum, K = 225 

Resistance R^ was measured at ambient temperature. The test 

motor was loaded to the desired horsepower and run for a 

specified time until a constant temperature had been reached. 

Measurement of the hot resistance requires quick stopping 

of the motor at the end of the heat run. Resistance after 

shutdown is measured as frequently as possible until resis­

tance readings have begun a slow decline from the maximum 

value. Knowing the hot resistance values, temperature is 

computed from Equation 4. 

If a motor of 50 horsepower or smaller is stopped 

within one minute after the shutdown, no extrapolation of 

observed resistance and corresponding is necessary. How­

ever, if a motor cannot be stopped within the specified 

time, resistance readings are taken at intervals of approxi­

mately one minute. A curve o€ these readings is plotted as 

a function of time and extrapolated to the time of shutdown. 

The value of temperature thus obtained is considered as the 

maximum temperature of the test motor. If successive measure-, 

ments show increasing temperature after shutdown, the highest 

value is considered (106). 
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The following two methods were used to obtain the resis­

tance of windings. 

a. Kelvin bridge method 

b. Voltage drop method 

Kelvin bridge method This method employed direct 

measurement of winding resistance. Figure 22(a) shows term­

inal markings according to the NEMA standards MGl-2.62 (72). 

Terminals 10, 11, and 12 are seldom accessible, however, 

test motors were supplied with their 12 terminals brought 

out. Resistance of all the six windings of the motor were 

measured with a Kelvin bridge instrument (James Bridle Bridge 

Instrument Co.). Equivalent circuits shown in Figure 20 

(c,d,e) were used to compute the resistance across two lines. 

A sample calculation for ^ 10 hp motor are given 

below. Line to line resistance values for the test motors 

were also measured. Computed and measured values of the 

line to line resistance of windings are given in Table 2. 

^ _ *1-4 *7-10 

A-Y ^1-4 + *7-10 (*2-5 *8-11) 

— .3206 (.3107) = 0785 
.3206 + .3107 + (.319 + .319) 

^ *7-10^*2-5 *8-11^ 

*1-4+ *7-10 •*" (*2-5 *8-11^ 
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r-CONNECTION FOR DUAL VOLTAGE 

voltage Ll L2 43 
TIE 

together 

LOW (1,7) (2,8) (3,9) (4,5.6) 

HIGH ( ! )  (2) 13) (4,7). (5,8) (^) 

TERMINAL MARKINGS FOR THREE-PHASE DUAL 
VOLTAGE (250/460) INDUCTION MOTOR 

CNEMA MGl-2.62) 

230 VOLTS, Y-CONNECTED 
THREE-PHASE MOTOR 

EQUIVALENT CIRCUIT-. DOTTED 

r-CIRCUIT REPLACES A-CIRCUIT ABC 

IS THE RESISTANCE /iCflCSS 

LINE I AND 2. 

Figure 22. Terminal markings and winding resistance. 
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^1-4^^2-5 *8-ll) 

" *1-4 + VlO + (*2_5 + Rg-iiJ 

.3206 (.3190 + .3190) _ nr-.o 
= 009 '1G12 

V9 = Vy + Vl2 = '156 + .3170 = .4730 

Ry_3 = Rg_y + R3_g = .1612 + .3143 = .4755 

_ By-g &-3 _ (.4730) (.4755) _ .225 
VD - Ry.g + Ry_3 ~ '4730 + .4755 " TgTgF " 

Rĵ l _ L2 ~ ̂ A-D ~ \-Y Ŷ-D ~ •0785 + .237 = .3155 

Voltage drop method To eliminate the variable human 

element involved in reading a manually balanced kelvin 

bridge, an automatic recording technique was used. Figure 

23 shows an instrumentation arrangement used in determining 

resistance by measuring voltage drop across the winding. 

The current in the winding was supplied by a constant cur­

rent D.C. power supply. 

A TPDT switch disconnected the motor from the three-

phase power supply and the winding of the motor was con­

nected to associated apparatus. Switch number 2 closed at 

the instant when the power to the motor was turned off. A 

preset time delay relay completed the circuit between a 

constant current D.C. power source and the motor windings 

two seconds after the motor came to rest. This prevented 



Table 2. Line to line resistance of motor windings 

Resistance *L1-L2 
(ohm) 

^Ll-LS 
(ohm) 

^2-L3 
(ohm) 

Motor Computed Measured Computed Measured Computed Measured 

10 HP .315 .314 .315 .315 .314 .315 

5 HP 
Brand (1) .956 .955 .960 .956 .950 .954 

5 HP 
Brand (2) 

1.00 1.05 .955 1.05 1.100 1.05 
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SPOT 

SWITCH # / 
TPDT 

TEST aOTOR 

Figure 23. Schematic diagram for resistance measurement by voltage drop method. 
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the D.C. power supply and data acquisition system from being 

damaged by any induced voltage present at the motor termi­

nal due to its generator action. The voltage drop, due to 

D.C. current, across the winding of the motor was recorded 

on a paper tape data acquisition system. Twenty successive 

data points were recorded during the cooling period. Knowing 

the magnitude of D.C. current and the voltage drop, the 

resistance of the winding was computed. 

Thermocouple method 

The thermocouple method for determining hot-spot 

temperature is recommended by IEEE and is used widely in the 

electrical industry (106). In this method, the temperature 

of the winding is recorded under steady state operation of 

a loaded motor. Unlike the resistance method, the test 

motor need not be stopped. Thermocouple detectors are 

placed in intimate contact with the insulation of coils. A 

bonding epoxy is used to hold the thermocouple in place. 

Impregnation of the stator winding provides a random 

buildup of varnish on the windings, thus resulting in varia­

tion of thermal resistance between the thermocouple and the 

winding and the variation in temperature at different pointt 

of the winding (106). To increase the probability of finding 

the hottest accessible area 15 thermocouples were embedded 

around the circumference of the stator winding. 
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The thermocouples were copper-constantan# American 

National Standard Institute (ANSI) type-T, made of .01 inch 

diameter wire. Distribution of thermocouples in the winding 

is given in Table 3. 

Table 3. Location and distribution of thermocouples in test 
motors 

Thermocouple Location 
Number 

1 Ambient 
2 Phase 1 winding/ at 12.0 o'clock 
3 Phase 1 winding, at 12.05 o'clock 
4 Phase 1 winding, at 12.10 o'clock 
5 Random, below a coil at 1.30 o'clock 
6 Phase 2 winding at 4.00 o'clock 
7 Phase 2 winding at 4.05 o'clock 
8 Phase 2 winding at 4.10 o'clock 
9 Random, above a coil at 5.30 o'clock 

10 Random at 5.50 o'clock 
11 Phase 3 winding at 7.0 o'clock 
12 Phase 3 winding at 7.05 o'clock 
13 Phase 3 winding at 7.10 o'clock 
14 Random at 9.30 o'clock 
15 Random at 10.00 o'clock 
16 In iron core at 11.30 o'clock 

Locations of the 15 thermocouples in the stator winding 

are shown in Figure 24. Each thermocouple was installed and 

its lead brought out in such, a manner that the thermocouple 

detector is effectively protected from contact with cooling 

air. After inserting the thermocouple between the coils, 

the epoxy was placed in the vicinity of the thermocouple. 
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The epoxy used had the characteristics of being thermally 

conductive and electrically insulative. 

Thermocouple lead wires were tied against the motor 

winding several inches before being brought out. This min­

imized the transfer of heat from the junction to the lead 

and also, as shown in Figure 25, kept the leads from rubbing 

against the rotor and the shaft. 

A 16 point 8 minutes per cycle honeywell recorder was 

used to monitor the temperature of the motor winding. To 

check the recorder for accuracy and calibration all thermo­

couples were placed in boiling water and test points rer 

corded. Then, a voltage signal from a potentiometer, 

equivalent to the voltage output of a type-T thermocouple 

at 212°F, was fed to the recorder. For proper calibration, 

data from the two sources should be closely matched. The 

calibration apparatus is shown in Figure 26. A sample cali­

bration chart is illustrated in Figure 27. 

A steady state condition for testing motors was con­

sidered to be reached when the increase in the hottest-spot 

reading declined to 1 degree rise for the three consecutive 

cycles. The temperature rise of the motor is the maximum 

temperature reading recorded prior to or after the shutdown 

less the ambient temperature of the immediate surrounding 

air. A typical recorder temperature curve for the 16 

thermocouples is shown in Figure 28. Several temperature 
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mUmm 

Figure 24. Thermocouples embedded in the stator winding, 
1. Thermocouple connector for recorder. 

Figure 25. Motor, squirrel cage rotor and embedded 
thermocouple. 



Figure 26. Calibration of recorder 
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Figure 28. A typical hottest-spot temperature rise curve 
from embedded thermocouples. 

measurement data were taken in similar tests with both 

methods, resistance and thermocouple. The maximum tempera­

ture rise of the windings indicated by the two methods were 

approximately the same. 

The resistance method of temperature determination in­

volves a lengthy computation and also measurement of cold 

resistance. It is necessary to stop the motor and change 
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the wiring connections of associated apparatuses to measure 

the hot resistance of the windings. After confirming that 

there was no significant difference in the results obtained 

from the two methods, temperature was measured by the therm­

ocouple method in subsequent tests. 

Complete specifications of the instruments used in this 

study are given in Appendix A. 
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DETERMINATION OF AUTOTRANSFORMER-CAPACITOR 
PHASE CONVERTER PARAMETERS 

Reports have been made on the optimtmi size capacitor 

and transformer turns-ratio that will produce balanced motor 

voltages and currents (40, 45). These values generally have 

been determined by empirical methods. Analytical equations 

were developed, in this study, to determine the capacitor 

size and the transformer turns-ratio for balanced currents 

in the motor by using basic principles of circuit analysis. 

The equations are in terms of readily available motor 

parameters; nameplate current, voltage and power factor angle. 

Two methods were used in developing the equations, vector 

diagrams and symmetrical components. 

Converter Parameter Equations 

A simplified diagram of an autotransformer-capacitor 

phase converter is shown in Figure 29. Single-phase lines 

are connected to the primary of the transformer and also to 

two of the terminals of the three-phase motor. Capacitors 

are connected between the step-up secondary terminal of the 

transformer and the third terminal of the motor. 

Vector method 

Figure 30 shows a vector diagram for a phase-converter, 

three-phase motor combination for the motor operating under 

balanced conditions. Single-phase voltage V is equal to 
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PHASE-CONVERTER 3-PHASE INDUCTION MOTOR 

RUNNING 
CAPACITOR 

STARTING 
CAPACITOR 

I-PHASE 
'AUTOTRANSFORMER 

Figure 29. Simplified diagram of autotransformer-capacitor 
phase converter three-phase motor combination. 

Figure 30. Vector diagram showing balanced conditions for 
the converter-motor combination in Figure 29. 
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^12' rated voltage of the motor. The autotransformer 

voltage in phase with V and therefore lies along the 

vector V^2' Currents and in the three windings 

of the motor lag behind the corresponding voltages by an 

angle (j), the phase angle. In Figure 30, only is shown. 

Voltage at terminal 3 of the motor is determined by the 

voltage across the capacitor and output voltage of the 

autotransformer 

The capacitor voltage, V^f is at a right angle to the 

current I^. Vector V^, when extended, intersects the trans­

former output voltage vector V^g point T. To operate a 

three-phase motor with balanced voltages and currents, the 

output voltage of the transformer should be equal to Vq,2' 

and voltage drop across the capacitor should be V^. The 

capacitor size and the transformer turns-ratio are derived 

as follows: 

From Figure 30 

^NO = ^IN 30 = 

V = Vj2 = n/T 

^IN ^2N ^3N 

V30 = ̂ IN + ̂  = (3/2) ̂ IN = ' y5?2)V (5) 

also VgQ = Vg sin (J) (6) 
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Therefore/ from Equations 5 and 6 

'c='VV2) ̂  (7) 

and the voltage drop across the capacitor is 

= I3 = :3 '5ïîe' 

I3 1 
and C = (^) (^) (8) 

c 

Under balanced conditions, the currents in the three windings 

of the motor are equal. 

Il = I2 = I3 = I 

where I is nameplate current. Substituting the value of 

from Equation 7 in Equation 8 

c = (i) (9) 

For f = 60 Hg and C in microfarads (uF), solving Equation 9 

gives the following relation for the capacitance 

C = 3063 (J) sin (10) 

where V and I are the nameplate voltage and current of the 

motor, and (j) is the power factor angle. 

The transformer output voltage can be written in 

terms of primary voltage 
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Vpa = nV 

where n is turns-ratio of the transformer. From Figure 30, 

V^2 can also be expressed as: 

\2 = <1 V) + ('i'jn ̂  ) cos 4, 

nV = i V + cot (J) (11) 

Equation 11 gives the output voltage from the transformer 

required for balanced operation of the motor. The trans­

former turns-ratio, n, from Equation 10 is 

1 \/T 
n = J + -J cot <t) (12) 

where (j) is the power factor angle previously defined. 

Symmetrical components method 

The method of symmetrical components permits analysis 

of motor performance under unbalanced conditions. An un­

balanced system of three related phasors can be resolved 

into three systems of balanced phasors, called symmetrical 

components of the original phasors (20, 21). The three 

systems of balanced phasors are; 1) positive-sequence com­

ponents, 2) negative-sequence components and 3) zero-

sequence components. The first two systems consist of three 

phasors, equal in magnitude and displaced from each other 

by 120 degrees. Negative-sequence components have a 



67 

direction of rotation opposite to that of positive-sequence 

components. Zero-sequence components are equal in magnitude 

and are in phase with each other (16, 28, 61, 62, 71, 73, 

75, 83). 

In Figure 30, taking as reference, the phase volt­

ages and can be expressed by the matrix 

Equation 13. The voltages and are the zero, 

positive and negative sequence components of phase 1, 

^2N 11 

^3N J 

1 1 

1 a: a 

\NO' 

^INl (13) 

^1N2 

where a is an operator, commonly called the characteristic 

angle of the system (89, 101, 102). For a three-phase 

system, a is defined as 

a = 1 /l20 = — ^ 4- i —^ 

a^ = 1 /240 = - J - j ̂  

Phase voltages obtained from Equation 13 are 

^IN ^INO ^INl ^1N2 

^2N ^ ̂ INl ^ ^1N2 

^3N ^INO ^ ̂ INl ^ ̂ 1N2 

(14) 

(15) 

(16) 
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The voltage Equations 17 and 18 for the single-phase voltage, 

V, and the output voltage at the ^utotransformer, nV, are 

obtained by applying Kirchhof's voltage law to the phase 

converter-motor circuit of Figure 29. 

V = ÎN - V 

"V = Vc + ̂ 3N - '̂ 2N (18) 

Substituting the values of Vjjj and from Equations 

14, 15 and 16 in Equations 17 and 18, and solving for n, the 

transformer turns-ratio 

n = % (19) 

^INl ^ ^1N2 

For the balanced condition of a motor, the zero-sequence and 

negative-sequence voltages are zero; therefore, 

in Equation 14. Taking V as a reference voltage and further 

simplification of Equation 19 gives 

Z /-30 (1-a^) 
# 

n — + j —̂  (.COS <|) - j sin (j)) (20) 

In Equation 20, n is a real number. Equating imaginary and 

real parts of Equation 20 

V 
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0 = j ^ - j ̂  sin (j> 

therefore ^ (21) 

T V_ 

and n = J + cos <j) (22) 

Replacing in Equation 21 by IX^ and solving for the cap-

itance C in microfarads 

C = 3063 (^) sin <t> (23) 

where I = Full load current of the motor (amps) 

V = Rated voltage (volts) 

(j) = Power factor angle (degrees) 

Substituting from Equation 21 in Equation 22 

n = Y + cot (j) (24) 

Equations 23 and 24 are identical to Equations 10 and 12 

developed with the vector method. 

Experimental Verification of the Equations 

Equations 10, 11, and 12 were verified experimentally 

for a 5 hp, three-phase, T-frame motor and a 10 hp, three-

phase, U-frame motor, both operating on single-phase power 

through autotransformer-capacitor phase converters. The 

output voltage of the autotransformer was varied by feeding 
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its primary windings through a variac. Capacitors were 

connected in parallel to obtain a capacitance value as 

close as possible to that predicted with the analytical 

equation. Test motors were loaded with the reaction-torque-

table dynamometer shown in Figure 18. 

Tests were conducted only at the full-load horsepower 

rating of the motors. Voltages, currents and power factors 

of the motors under full load were measured with the switch­

ing and metering arrangement shown in Figure 19. Data were 

obtained with motors operating on both three-phase power and 

phase converters. This provided a comparison of voltages, 

currents and power factors of the motors operated on both 

power sources. 

The current and voltage value from the motor nameplate 

and the power factor from the manufacturer's literature for 

the 5 hp and 10 hp test motors are given in Table 4. 

Table 4. Rated voltage, current and power factor of test 
motors 

Motor 
horsepower 

I 
amps 

V 
volts p.F 

Phase Insulation 
angle class 

* 

5, T-Frame 14.4 230 0.80 36° 52' B 

10, U-Frame 27.0 220 0.84 32° 52' A 
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The predicted value of capacitance for balanced opera­

tion of the 5 hp motor can be calculated from the data in 

Table 4 and Equation 10 in the following manner. 

C = 3063 sin (36° 52') 

= 115.0 n? 

The autotransformer secondary voltage required for balanced 

operation is obtained from Equation 11 

nV = J (230) + ^ (230) cot (36° 52') 

= 380.6 volts 

Equation 12 gives the transformer turns-ratio 

n = I + cot (36° 52') 

= 1.65 

The autotransformer-capacitor phase converter parameters 

are calculated for the 10 hp, U-frame motor by using Equa­

tions 10/ 11 and 12 in a manner identical to that used for 

the 5 hp motor. 

C = 3063 (^1^) sin (32° 52") 

= 204.0 yP 
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nV = J (220) + ^ (220) cot (32° 52') 

= 405 volts 

and n = Y + ^ cot (32° 52') 

= 1.84 

The predicted and experimental values of capacitor size, 

autotransformer voltage and turns-ratio are summarized in 

Table 5. The values of capacitance used in the experimental 

verification could not be set exactly equal to the predicted 

values because of the sizes of capacitors available. The 

voltages determined experimentally for balanced operation of 

the motors were slightly lower than the predicted values. 

This is attributed to the use of capacitance values slightly 

larger than those predicted by the analytical equation. 

Table 5. Predicted and experimental values of autotrans-
former-capacitor phase converter parameters. 

hp Parameters Predicted values Experimental values hp 
for balanced for balanced opera­
operation tion 

C 115.0 yF 119.8 jjF 
5 nV 380.6 volts 375.0 volts 

n 1.65 1.63 

C 204.0 uF 206.0 yF 
10 nV 405.0 volts 403.0 volts 

n 1.84 1.85 
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The performance of motors operating on three-phase line 

power and single-phase power through the phase converter 

is shown in Table 6. There were no significant differences 

between the voltages, currents, and power input. 

Table 6. Voltages, currents, power input and power factor 
of three-phase motors operated at rated horse­
power on three-phase power and single-phase power 
thru a phase converter. 

Motor size 5 hp, T—frame 10 hp, U-frame 

Power source Three-
phase 

- Single phase 
thru converter 

Three-
phase 

Single phase 
thru converter 

"l 
(Amp) 14.8 14.4 28.0 28.6 

:2 
II 14.6 14.4 27.6 26.0 

:3 II 14.2 14.6 27.0 26.4 

^12 
(Volt) 230 230 220 220 

^23 
It 230 230 220 220 

^13 
II 230 230 220 220 

^IN 
II 133 132 127 128 

^2N 
II 133 132 127 127 

^3N 
n 133 132 126.5 128 

Power (kW) 4.52 4.54 8.84 8.60 

Power factor 0.78 .88 0.84 0.96 
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The close agreement of the operating conditions of the 

motors on three-phase power and on the phase converter veri­

fies that the equations developed in this study can be 

applied to determine analytically the capacitor size and 

autotransformer setting for balanced voltages and currents 

in a three-phase motor with an autotransformer-capacitor 

phase converter. 
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OPTIMIZATION OF PARAMETERS FOR THE PRACTICAL APPLICATIONS 

With changes in load on a general purpose 3-phase motor 

operated on three-phase line power, the power factor of the 

motor changes. Power factor of a lightly loaded motor is 

less than that of a motor under full load. In a lightly 

loaded motor, currents in the three-phases are equal but 

smaller in magnitude than the full load current. 

An autotransformer-capacitor phase converter adjusted 

to parameter values determined by Equations 10 and 11 pro­

vide balanced voltages and currents to a three-phase motor 

but for a given load only. The effect of line current and 

phase angle changes for the motor with different loads can 

be shown with vectors and V^2 Figure 31. As the load 

on the motor is reduced, the lengths of vectors and 

are also reduced. Knowing the values of (p and I for the 

load on the motor, the size of capacitors, C, and transformer 

turns-ratio, n, can be determined from Equations 10 and 11. 

These parameter values would provide balanced operation of 

three-phase motor for the particular value of load on the 

motor. For loads where the power required is constant, the 

running performance of a three-phase motor with an autotrans­

former-capacitor phase converter is nearly equal to the 

performance of the motor on three-phase power line. In many 

applications on farms, however, the loads are variable. 
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Figure 31. Vector diagram for the balanced operation of a 
phase converter operated three-phase motor at 
various loads. 

An autotransformer-capacitor phase converter adjusted for 

the maximum load may not operate a motor satisfactorily over 

a range of loads. To avoid poor performance, manufacturers 

of farm equipment sometimes install oversized motors. These 

motors do not draw rated currents when operating lighter 

loads. A phase converter with parameters selected for the 

nameplate current and full load power factor will not provide 

balanced currents and voltage. 

An attempt was made in this study to find the optimum 

adjustment on an autotransformer-capacitor converter that 



77 

would provide satisfactory performance of a three-phase 

motor for moderately variable loads. Tests were conducted 

on a 10-hp, U-frame, 220 volts, three-phase motor and a 

5-hp, T-frame, 230 volts three-phase motor. To find the 

phase angle and current requirement for various loads, the 

test motors were first operated on three-phase power. The 

performance characteristics curves for the two motors are 

shown in Figures 32 and 33. The experimental data for these 

curves are given in Tables 19 and 20 in Appendix C, 

The design parameters for the 10-hp and 5-hp motors 

were calculated using Equations 10 and 11, for the balanced 

operation of the motors at 80, 90, and 100% of rated load. 

Equations 10 and 11 are reproduced below. 

C = 3063 (^) Sin (p 

nV = J V + ^ Cot <p 

Table 7 shows the values of C and nV for the three loads. 

The 5-hp, T-frame motor used for this study was a different 

brand than the motor used in the previous section, experi­

mental verification of design equations. 

Performance Characteristics 

The autotransformer-capacitor phase converter param­

eters were adjusted for balanced voltages and currents with 

a 80% load on the 10-hp motor. To illustrate the effect of 
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Figure 32. Performance curves of a 10-hp, U^frame, 220 
volts, three-phase motor operated on three-
phase line power. 



90 

BO 

70 

60 

.9 

.7 

.6 

SO e 

I & 40 

1= 

I. 

.3  

.2 

30 

SO 

10 

O"- .0 

245 
f H P .  b 3  S o  VCiT motor 3-^ fow supply. 

UI 225 

• 5 220 

X VOLTAGE 

a CuegENT 

+ Pcwr* INPUT 

B SLIP 

0 /O 20 30 40 50 60 70 80 90 100 HO 120 130 140 ISO 
LOAD C%OF FULL LOAD TORQUE) 

-22£ SA • 

200 48 -

•17.5 42 • 

1 ,  
- ISO ^ • i6  -

3  

t-

1 - /2 .5 |  1  

o 

30 • 
<-> 

e  

% 9: 

• /oo^  •  

i 

«0 
24 •  

- 7.5 1.6 • 

• 5.0 12 • 

IS 1
 0£ • 

•  0  0 

6.7S 

60 

525 

Î2 
K 

4.5 5 
o 

3.75|  

J 
225 

1.5 

.75 

vo 
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loads other than that for which the converter was adjusted 

the test motor was loaded from 60 to 120% of the full load. 

For each load on the motor, information was obtained on line 

currents, line to line voltages at the motor terminals, 

power input, efficiency of the motor converter combination, 

slip of the motor, and temperature rise of the motor 

windings. 

Table 7. Parameters of an autotransformer-capacitor phase 
converter for balanced operation of the 10-hp, U-
frame, 220 volts motor and the 5-hp, T-frame, 230 
volts motor at various loads. 

Test Parameters for balanced operation at 
Motors 80% load 90% load 100% load 

C nV n C nV n C nV n 

5-hp, T 
brand 111 331 1.44 115 351 1.53 121 363 1.58 

( 2 )  

10-hp, ]_go 383 1.74 193 3 9 4  1 . 7 9  204 405 1.84 

The experiment was repeated with the converter adjusted 

for balanced operation at 90% and 100% of the load. 

Voltages and currents 

With the converter adjusted for 80% motor load, the 

line currents and voltages as shown in Figures 34 and 35 are 

closely balanced when the motor was loaded to 80% of its 
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rated horsepower. Motor terminal voltages and line currents 

became unbalanced, however, with the load on the motor 

other than 80%. For example the percentage unbalance in 

line currents was 12% at 70% and 90% loads. The unbalance 

at ± 20% load increased to 24%. The percentage of unbal­

ance was computed from the maximum difference in current or 

voltage from the average of the three line currents or the 

three line to line voltages. 

The maximum unbalance in terminal voltages was 2% at 

t 10% load and 4% at ± 20% load. As the load on the motor 

deviated further from 80%, the unbalance in both current 

and voltage increased rapidly. 

The average line current of the motor operated at var­

ious loads from the three-phase power line is also graphed 

in Figure 34 for comparison. This illustrates the spread 

of three unbalanced line currents of the motor operated 

from an autotransformer-capacitor converter in relation to 

the average line current with three-phase power. 

Figures 36 and 37 are line currents and voltages of 

the 10-hp U-frame motor with the converter adjusted for 

balanced operation at 90% of the load. The maximum unbal­

ance in line current was 8% at -10% load and 16% at +10% 

load. At -20% load the current unbalance increased to 22% 

and at +20% load the unbalance was 27%. The maximum volt­

age unbalance was 3.2% at -20% load, 1.9% at -10% load. 
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Figure 34. Current vs. load of a 10-hp U-frame/ 220 volts 
motor with the converter adjusted for balanced 
operation at 80% of rated load. 
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Figure 35. Voltage vs. load of a 10-hp U-frame', 220 volts 
motor with the converter adjusted for balanced 
operation at 80% of rated load. 
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Figure 36. Current vs. load of 10-hp U-frame 220 volts 
motor with the converter adjusted for balanced 
operation at 90% of rated load. 
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Voltage vs. load of a 10-hp U-frame 220 volts 
motor with the converter adjusted for balanced 
operation at 90% of rated load. 
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3.1% at +10% load, and 5.4% at +20% load. Line currents and 

voltage of motor with the converter adjusted for 100% load 

are shown in Figures 38 and 39. 

The data on percentage unbalance of currents and volt­

ages of a 10-hp U-frarae, 220 volts motor with the three 

adjustments of converter parameters are summarized in Table 

8. Deviation in loads is the difference between the actual 

load on the motor and the load for which the converter was 

adjusted. 

Table 8. Percentage of maximum unbalance in line currents 
and terminal voltages of a 10-hp U-frame, 220 
volts motor under various loads. 

I 
and 
V 

80 40 25 12 2 12 23 35 

I 90 33 22 8 3 16 27 39 

100 30 21 10 4 15 27 42 

80 4.3 3.2 2.1 0.9 2.0 4.3 6.8 

V 90 4.5 3.2 1.9 0.9 3.1 5.4 8.4 

100 4.8 3.6 2.1 1.2 2.6 5.9 9.5 

Converter Percentage maximum unbalance 
adjusted Deviation in load, % of rated 

for % rated _20 -10 0 +10 +20 +30 

The experimental data pertaining to Figures 34 through 39 

are given in Tables 21, 22, and 23 in Appendix C. 
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Current vs. load of a 10-hp U-frame 220 volts 
motor with the converter adjusted for balanced 
operation at 100% of rated load. 
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Figure 39. Voltage vs. load of a 10-hp U-frame 220 volts 
motor with the converter adjusted for balanced 
operation at 100% of rated load. 



86 

Power input and efficiency 

Power input and efficiency curves for the motor oper­

ating on a three-phase power line and on an autotransformer-

capacitor converter with parameters adjusted for the balanced 

operation at 80, 90/ and 100% load are shown in Figures 40 

and 41. Power input to the motor, over the range of loads, 

was minimum with the three-phase power line. Power drawn 

by the motor-converter combination, for the three settings 

of parameters, was about the same. A slightly higher power 

was drawn by the motor operating with the converter adjusted 

for balanced currents at 80%, 90%, and 100% of the rated 

load than that with three-phase operation. 

Efficiency of the motor operated on a three-phase power 

line was greater than with the phase converter. This was 

2 
due to the additional power lost, I R and eddy current losses 

in the transformer winding of the phase converter. The 

motor phase converter combination had about the same maximum 

efficiency for the three adjustments of capacitors and trans­

formers. For all the three settings, the maximum efficiency 

resulted at a load 10% above that for which the parameters 

were adjusted. For example, with the parameters adjusted 

for 80% load, the maximum efficiency occurred at 90% of the 

rated load. 
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Figure 40. Power input vs. load of a 10-hp U-frame 220 volts 
motor with the converter adjusted for balanced 
operation at 80, 90, and 100% of rated load. 
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Efficiency vs. load of a 10 hp U-frame 220 volts 
motor with the converter adjusted for balanced 
operation at 80, 90, and 100% of rated load. 
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Power factor 

The power factor of the motor is improved when operated 

from a phase converter. As shown in Figure 42, the power 

factor of the three-phase line supplying power to the test 

motor is less than that of the single-phase line connected 

to the phase converter-motor combination. Power factor of 

the system improved as the load on the motor was increased. 

At 120% of the rated load, power factor of the three-phase 

motor is 0.85 and nearly unity for the three settings of the 

phase converter. 

Slip 

Slip of the motor, at various loads, operating from a 

three-phase power line and a phase converter is shown in 

Figure 43. The speed of an induction motor is reduced with 

an increased load. The difference in slip of the motor at 

60 to 90% of the rated load, operating on the three-phase 

line and the three settings of the phase converter is very 

small. At loads above 90%, however, slip of the motor oper­

ated from a phase converter is higher than that with the 

three-phase power source. Slip was highest for balanced 

operation at 80% load and least with the adjustment for 

balanced currents at 100% load. 

Temperature rise 

The temperature rise of the motor winding measured with 

embedded thermocouples is shown in Figure 44. For the 
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Figure 42. Power factor vs. load of a lO-hp U-frame 220 
volts motor with the converter adjusted for 
balanced operation at 80/ 90, 100% of rated 
load. 
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Figure 43. Slip vs. load of a 10 hp U-frame 220 volts motor 
with the converter adjusted for balanced opera­
tion at 80, 90/ and 100% of rated load. 
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Figure 44. Temperature rise vs. load of a 10 hp U-frajne 220 
volts motor with the converter adjusted for bal­
anced operation at 80, 90, and 100% of rated load. 
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same load on the motor, the motor ran cooler, in general, 

on the three-phase supply than on single-phase line through a 

phase converter. Temperature of the winding is related to 

motor current, thus temperature rise is greater at higher 

loads. Temperature rise in the motor windings under all 

test conditions did not exceed the design limits of the 

insulation. 

The experiment conducted on thé 10-hp U-frame motor was 

repeated for a 5-hp T-frame, design B, 230 volts motor. The 

values of parameters for balanced operation at 80, 90 and 

100% of rated load are given in Table 7. The difference in 

capacitor sizes for balanced operation at 80 and 90%, was 

very small. The capacitors available for this study did not 

permit fine adjustment. Therefore, tests for the 5-hp motor 

were conducted for two settings only, i.e., balanced opera­

tion adjustments at 80 and 100% of the rated motor load. 

The performance characteristics curves of currents, 

voltages, power input, efficiency, power factor, slip, and 

temperature rise, for a 5-hp, design B, 230 volts, three-

phase test motor are shown in Figures 92 through 100 in 

Appendix C. The experimental data related to these figures 

are given in Tables 24 and 25, also in Appendix C. 

The effects of loads other than the load, for which the 

converter was adjusted, on the performance of a 5-hp T-frame 

230 volts test motor are very similar to those explained for 

the 10-hp, U-frame, 220 volts test motor. 
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The experimental results in this section of the study 

show that in the applications where the motor supplied with 

the machine is oversized, for better performance of the motor, 

parameters in the autotransformer-capacitor phase converter 

should be adjusted for the actual load on the motor and not 

for its nameplate horsepower. This will require measurement 

of the current drawn by the motor and determination of the 

corresponding power factor from the performance character­

istics curves obtained with the motor operating on three-

phase power. Figures 32 and 33 are two examples of such 

curves. 

In applications where load fluctuates often over a 

moderate range, the autotransformer-capacitor converter 

should be adjusted for the average value of the load. For 

example, with the motor load varying between 80 to 100% of 

the rated, parameters adjusted for 90% of the rated load may 

give the best results. On applications where only infrequent 

variations in load are expected, the converter should be 

adjusted for the most frequently encountered load. 
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VOLTAGE EFFECTS ON PHASE CONVERTER OPERATED 
THREE-PHASE MOTORS 

The increased use of phase converter operated three-

phase motors has made desirable the study of the effects of 

input line voltage variation on motor performance. Present 

phase converter designs do not provide identical terminal 

voltages at each phase of the motor when the single-phase 

input voltage to the phase converter varies. When the phase 

voltages are not equal, unbalanced currents flow in the motor 

stator windings. The magnitude of current unbalance is 

dependent on the voltage unbalance. Even a small amount of 

voltage unbalance may increase currents and excessive motor 

heating, because phase current unbalance is several times the 

voltage unbalance. 

Most general purpose poly-phase induction motors are 

designed to operate within a voltage range of 10 per cent 

above or below a nominal voltage (3, 69). This allowable 

operating range is based on the assumption that the voltages 

applied to the motor are equal. Performance of a three-

phase motor operating on unbalanced voltage can be unde­

sirably different from that given by motor manufacturers 

(33, 34). For this reason, some manufacturers often have 

refused to guarantee three-phase motors operated on single-

phase power through a phase converter. 
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Test Outline 

In this study, the effects were investigated of input 

line voltage variation on the performance of a 5-hp, three-

phase, T-frame, 230-volts, NEMA design B motor. The motor 

was operated on a three-phase power supply and on autotrans-

former-capacitor and rotary converters. Input voltage was 

varied over the range of 85 to 115 per cent of the rated 

voltage of the motor. 

The block diagram shown in Figure 45 outlines the tests 

performed and parameters studied. Motor terminal voltage, 

line currents, winding temperature, power input, and slip 

were recorded with load on the motor held constant at rated 

full-load torque (15 lb.-ft.). 

5-hp,230V 
T-Prmme 
Design B 
3-$ Motor 

Tested 2. Auto-Cap 
1. 3-* Power 

Input voltage 
with . variation 85% to 

Performance 

Motor terminal voltag* 
Line current 
Winding temperatur# 
Power input 

o n '  c o n v e r t e r  
3. Rotary 

converter 

^ variabxun OJA 

115% of rated 
studied 

Efficiency 
Power factor 
Slip 
Locked Rotor torque 
Pull-up torque 
Breakdown torque 

Figure 45. Outline of motor tests and parameters studied. 
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Three-phase Power 

The motor was operated from a three-phase power line, 

and line-to-line voltages ^13' Vgg were kept in 

balance as the applied voltage was varied. This contrasts 

with the phase converter tests where the balance of voltages 

at the motor terminals were dependent on the magnitude of 

the single-phase input line voltage to the phase converter. 

Autotransformer-Capacitor Converter 

This converter provides balanced operation of a three-

phase motor with proper capacitor size and autotransformer 

output voltage for a given load. For these tests, the capac­

itor value and autotransformer voltage were adjusted to give 

balanced voltages and currents at the motor terminals with 

the motor operating at full load and rated voltage. A 

simplified diagram of an autotransformer-capacitor phase 

converter, and three phase motor combination is shown in 

Figure 46. 

The capacitor size and transformer output voltage were 

determined by using design Equations 10 and 11 developed by 

the author and described previously on pages 65 and 66. 

Equations are repeated below. 

C = 3063 (|) sin (|) 

^T2 = i (V) + ^ (V) cot 4) 
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c = capacitor size (microfarads) 

I = full-loa,d current of motor (ajnps) 

V = rated voltage (volts) 

<j) = power factor angle (degrees) 

V^2 = transformer output voltage (volts) 

PHASE-CONVERTER 3-PHASE INDUCTION MOTOR 

RUNNING 
CAPACITOR 

/-PHASE 
- 'AU TOTRANSFORMER 

Figure 46. Schematic diagram of an autotransformer-capacitor 
phase converter and three—phase motor combination. 

Rated current of the motor was 14.5 amps/ and power 

factor at full load and rated voltage was 0.78(38° 40'). 

Values of C and were computed as: 

C = 3063 Sin (38° 40') 

= 120.6 yF 
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V^2 = J (230) + ^ (230) Cot (38° 40') 

= 364 volts 

Rotary Phase Converter 

A diagram of a rotary phase converter and three-phase 

motor combination is shown in Figure 47. The rotating trans­

former base unit was rated at 10.5 KVA, 230 volts and a 

total motor load of 10.5 hp. The value of capacitance in 

the capacitor panel was 365 yF. 

PHASE CONVERTER 3-PHASE MOTOR 

/'PHASE 

VOLTAGE 

CAPACITOR PANEL 

Figure 47. Schematic diagram of a rotary phase converter 
and three-phase motor combination. 
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Performance Characteristics 

Electrical and mechanical characteristics of the test 

motor are illustrated in Figures 48 through 59. Comparisons 

are shown for the motor operating on three-phase power and 

on single-phase power through phase converters. Phase volt­

ages and currents, motor temperature rise, power input, 

efficiency, power factor, slip, and locked-rotor, pull-up, 

and breakdown torques are given for a variation of input 

line voltage of ± 15 per cent of nominal motor voltage. 

Experimental data pertaining to these tests is given in Tables 

26 through 32 in Appendix C. 

Voltages and currents 

Motor terminal voltages for the motor operating on an 

autotransformer-capacitor phase converter are shown in 

Figure 48. With the calculated values of capacitance, 

autotransformer output voltage and an input voltage of 230 

volts, the line-to-line voltages and Vgg at the 

motor terminals were equal. Motor terminal voltages became 

unbalanced, however, with the variation of input voltage 

above and below rated motor voltage. The percentage un­

balance as computed from the maximum deviation in voltage 

from the average of the three voltages was 4.5 and 2.5 per 

cent at an input voltage 10 per cent below and above rated 

voltage, respectively. 
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Figure 48. Voltage at terminals of a 5-hp, T-frame, 230 
volts, design B test motor vs. single-phase 
input line voltage to autotransformer-capacitor 
phase converter. 

Figure 49 shows the effect of voltage variation on cur­

rents in the motor operated on three-phase power and on the 

autotransformer-capacitor converter. With the motor on 

three-phase power, line currents increased with input voltage 

above or below nominal, but remained approximately balanced. 

The average of the three line currents shown in Figure 49 

was 8 and 10 per cent higher than rated at 85 and 115 
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Figure 49. Line current of a 5-hp, T-frarae, 230 volts test 
motor operated on three-phase power and on auto­
transformer-capacitor converter vs. input line 
voltage. 

per cent of rated voltage, respectively. With the motor 

operating on the autotransformer-capacitor phase converter, 

line currents were balanced at nameplate value at rated 

voltage and became unbalanced as the voltage varied. Cur­

rents and I2 were about 50 per cent higher, and was 

21 per cent lower, than rated current at 85 per cent voltage. 

At 110 per cent of rated voltage, and were 14 per cent 

above, and was 8 per cent below rated voltage. 

Terminal voltages of the motor operating on the rotary 

phase converter are shown in Figure 50. With the rotary 
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Figure 50. Voltage at terminals of a 5-hp, T-frame, 230 
volts, design B test motor vs. single-phase 
input line voltage to rotary phase converter. 

converter, the change in single-phase input line voltage has 

slightly less effect on terminal voltage as compared with 

that which occurred with the autotransformer-capacitor con­

verter, but the percentage unbalance was greater at over 

voltage. 

The effects of voltage variation on phase currents for 

the motor operated on the rotary converter are illustrated in 

Figure 51. The artificial phase current, remained 



104 

20.0 

I 
< /7.5 
w 

K 

Uj 

ct 

o 

g 

12.0 

ROTARY CONVERTER 

/h 

o- "o 

1 1 i 1 1 1 -
1
 

85 90 95 100 105 110 115 120 

VOLTAGE (% OF RATED) 

Figure 51. Line current of a 5-hp, T-frame, 230 volts test 
motor operated on three-phase power and on 
rotary converter vs. input line voltage. 

below, and above, the three-phase average line current 

over the entire range of voltage. The percentage unbalance 

in phase currents was greater at the higher voltages with 

the rotary converter in contrast to the greater unbalance 

that occurred with the autotransformer-capacitor converter 

at voltages lower than rated. The highest current, was 

22 and 35 per cent above the rated value at 85 and 115 

per cent of the rated voltage, respectively. 
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Winding temperature 

Because one or more of the motor phase currents increase 

at under and over voltage, temperature of the motor windings 

will be higher than at rated voltage. High winding tempera­

ture may cause insulation deterioration and reduction of 

motor life. 

Figure 52 shows the highest temperature rise of the 

motor windings as measured with embedded thermocouples, 

with the motor operating on three-phase power and on the two 

types of phase converters. Temperature rise was lowest at 

rated voltage and increased at under and over voltages. A 

i 15 per cent variation of the rated three-phase voltage 

increased the temperature rise by 15° C (27° P) above the 

temperature rise of 66° C (119° F) at rated voltage. The 

highest temperature rise recorded for the motor operating 

on the autotransformer-capacitor converter was 97° C (175° F) 

at 90 per cent voltage. With the rotary converter, the 

highest winding temperatures recorded were 83° C (149° F) and 

98° C (176° F) at an input line voltage of 110 and 115 per 

cent, respectively. ' 

Class B insulation used in NEMA T-frame motors is rated 

for a total allowable temperature pf 130° C (266° F). The 

allowable temperature rise is 90° C (162° F) on the basis of 

a 40° C (104° F) ambient temperature. As illustrated in 

Figure 61, input voltage to the autotransformer-capacitor 
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Figure 52. Temperature rise of a 5-hp T-frame, 230 volts, 
design B motor vs. input line voltage. 

converter below 90 per cent of rated and input voltage to 

the rotary converter above 115 per cent of rated may cause 

excessive temperature rise and thu§ insulation damage, par­

ticularly with ambient temperatures of 40° C (104° F) or 

higher. 
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Power input and efficiency 

Power input to the test motor and efficiency of the 

motor on three-phase power and on the two types of phase 

converters are shown in Figures 53 and 54, respectively. 

For the entire range of line voltage, the power input was 

highest for the rotary converter and lowest for the three-

phase line power operation. Power input to the motor on 

three-phase line power was almost constant up to 105 per cent 

of rated voltage and increased slightly at higher voltages. 

Power input to the autotransformer-capacitor converter 

operating the test motor was lowest at rated voltage and 

slightly higher at voltages of 85 and 110 per cent of rated. 

With the rotary phase converter, power input was approxi­

mately constant from 85 to 100 per cent of rated voltage, 

but increased by 18 per cent at 115 per cent of rated volt­

age. 

Efficiency of the motor operating on three-phase line 

power was nearly constant up to 105 per cent of rated volt­

age and decreased slightly at higher voltage. For the motor 

operating on phase converters, the curves represent the 

combined efficiency of the phase converter and motor. With 

+ 10 per cent variation in input voltage, efficiency of the 

autotransformer-capacitor converter and motor combination 

dropped by only 3 per cent from a nominal value of 78 per 

cent. Efficiency of the rotary phase converter and motor 
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Figure 53. Power input of a 5 hp T-frame, 230 volts, design 
B motor vs. input line voltage. 
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Figure 54. Efficiency of a 5 hp T-frajne, 230 volts, design B 
motor vs. input line vpltage. 
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combination was approximately 70 per cent from 85 to 95 per 

cent of rated voltage, but dropped sharply to a value of 59 

per cent at 115 per cent of rated voltage. 

Power factor 

Power factor of the test motor operating on three-

phase line power and phase converters is shown in Figure 55. 

On three-phase line power, power factor increased slightly 

with decreasing voltage (0,8 at 100% and 0.82 at 90%) and 

decreased rapidly with voltage above rated (0.69 at 110%). 

With the autotransformer-capacitor converter, power factor 

of the system was 0.9 at rated voltage and increased to 

approximately 1.0 at 90 and 110 per cent of rated voltage. 

Power factor of the system with the motor operating on the 

rotary converter was lower than that with three-phase and 

decreased linearly as input line voltage was increased (0.70 

at 90 per cent and 0.48 at 100 per cent). 

Sli£ 

Figure 56 shows slip of the test motor in relation to 

input line voltage. At rated voltage, slip was approxi­

mately 3 per cent for operation on three-phase power and on 

both phase converters. At 90 per cent of rated voltage, 

slip increased to approximatley 4 pep cent and vas greater 

with both phase converters than with three-phase power. At 

110 per cent of rated voltage, slip decreased to approxi­

mately 2.5 per cent. At the higher voltage, slip was 
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Figure 55. Power factor of a 5-hp, 23Q volts, T-frame, 
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Figure 56. Slip of a 5-hp, 230 volts, T-frame, design B test 
motor vs. input line voltage. 

greatest with the rotary converter and lowest with the auto-

transformer-capacitor converter. 

Torque 

When a motor is started on other than normal voltage; 

the locked-rotor, pull-up, and breakdown torques must be 

considered carefully. An approximation is frequently made 
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that torque varies as the square of the applied voltage (7) . 

According to standards on motors (33, 72), this assumption 

does not apply when the motor terminal voltages are other 

than balanced. 

Data on locked-rotor, pull-up, and breakdown torques 

of the test motor operating on three-phase line power and 

phase converters are graphed in Figures 57, 58, and 59. 

With three-phase line power, torques were consistently higher 

than those with phase converters. Locked-rotor and pull-up 

torques of the motor operated on the autotransformer-capaci-

tor converter were higher than on the rotary converter. How­

ever, breakdown torque was higher with the motor operating 

on the rotary converter than on the autotransformer-capaci-

tor converter. 

Locked-rotor, pull-up, and breakdown torques of the 

motor operating on three-phase line power and on phase con­

verters, over the input voltage range of 85 to 115 per cent 

of rated are summarized in Table 9. Torque values are given 

as a percentage of rated full-load torque of the test motor. 

Breakdown torque of the motor operating on the autotrans-

former-capacitor phase converter is the maximum torque on 

that portion of the torque-speed curve with the starting 

capacitor switched out of the circuit. 

Although locked-rotor and pull-up torques of the motor 

with phase converters are lower than those obtained on 
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Figure 57. Locked-rotor torque of a 5-hp, T-frame, 230 volts 
test motor vs. input line voltage. 

three-phase line power/ they may be sufficient to start a 

majority of farm loads. Load torque at operating speed, in 

most applications, is much lower than the breakdown torque. 

The lower values of breakdown torque with phase converters 

may not be a serious problem as long as the reduction in 
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Figure 58. Pull-up torque of a 5-hp, T-frame, 230 volts, 
design B test motor vs. input line voltage. 

torque is minimized by holding the input line voltage close 

to the rated value. 

To show the effect of voltage variation, dynamic torque-

speed curves of the motor, operated on three-phase line power 

and both types of phase converters, were plotted. Figures 

86, 87, and 88 in Appendix C are torque-speed curves for a 

5~hp/ design B, 230 volts, brand 1, three-phase motor. 
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Figure 59. Breakdown torque of a 5-hp, T-frame, 230 volts, 
design B test motor vs. input line voltage. 



Table 9. 5-hp, T-frame, design B, 230 volt motor torque characteristics with 
Variations in input line voltage. 

Input 
line 
voltage 
% of 
rated 

Locked--rotor torque^ Pull--up torque Breakdown torque 
Input 
line 
voltage 
% of 
rated 

3—(j) 
power 

Auto-
cap. 
conv. 

Rotary 
conv. 

3-4 
power 

Auto-
cap, 
conv. 

Rotary 
conv. 

3—<j) 
power 

Auto-
cap. 
conv. 

Rotary 
conv. 

85 213 153 147 185 133 117 197 110 160 

90 240 173 160 206 153 128 220 123 177 

100 300 213 197 253 200 160 273 153 213 

110 367 257 237 300 240 197 330 180 260 

115 406 280 263 327 261 217 360 200 283 

^•All torque values are given as a percentage of rated full-load torque. 
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EFFECTS OF UNBALANCED VOLTAGE ON MOTOR PERFORMANCE 

When three-phase motors are opej-ated from a single-

phase power line through phase converters, the voltage at 

the motor terminals are not always balanced. The effects 

of unbalanced voltage on the performance of three-phase 

induction motors have been disucssed in various technical 

reports (8, 54, 63, 65, 84, 110). Most of these reports 

deal with the unbalance conditions of voltage on three-phase 

line power. They do not include the voltage unbalance that 

is typical of the three-phase voltage output of phase con­

verters. Because of this difference a study was made of the 

effects of unbalanced voltage on the performance of a three-

phase motor operating on a phase converter. 

Unbalance in the voltage output of a phase converter is 

caused mainly by two conditions, the load on the motor-con­

verter combination is above or below the motor rating and the 

single-phase voltage input to the phase converter is dif­

ferent than the rated voltage. In both conditions the nature 

of unbalance, usually, is such that the two voltages and 

V23 are either higher than Y^2 both are lower than 

This is shown in Figures 35, 37, 39, 48, and 50 and also 

verified by Knight et al. (57). 
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Unbalance with Three-Phase Power 

To study the effects of unbalanced voltage on the 

three line currents and winding temperature, the test motors 

were operated at various percentages of unbalance in motor 

terminal voltages. The voltage unbalance similar to that 

which occurred with the motors operating from phase con- . 

verters, was simulated from the three-phase line power 

supply. The voltage held constant and the magnitude 

of the two voltages and V23 were maintained at various 

values above and below The circuit used to obtain the 

various values of and V22 is shown in Figure 15. 

A 10 hp U-frame and a 10 hp T-frame motor were tested 

at 80 and 100 per cent of the rated load, with voltage 

unbalance up to a maximum of 6 per cent. The unbalances in 

voltage and current were computed according to the following 

definition given in the application data section MGl-14.33 of 

NEMA Standards (72). 

For example, if three line to line voltages are 220, 241, and 

232, the average voltage is 231, the maximum deviation from 

the average is (231-220) = 11 volts, and the percentage 

unbalance is (11/231) x 100 = 4.76. 

Per cent 
voltage = 100 x 
unbalance 

Maximum deviation from avg. voltage 
avg. voltage 

(25) 
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Current unbalance 

Figure 60 shows the percentage unbalance in three line 

currents of the two test motors with respect to the percent­

age unbalance in voltages. The zero on the X-axis represents 

perfect balance. The curves to right of zero are for volt­

ages and Vgg exceeding the single-phase voltage, and 

the curves on the left of the zero are for and Vgg less 

than V^2• The experimental data and computed unbalance in 

voltages and currents of 10 hp U and T-frame motors, cor­

responding to Figure 60 are given in Tables 33. through 37 in 

Appendix C. 

As shown in Figure 60, the current unbalance was 

slightly higher at 80 and 100% load for U-frame motors than 

for T-frame motors. This was found to be true for the 

voltage unbalance, range shown in Figure 60. For both motors, 

the unbalance in line currents was about 5 to 7 times greater 

than voltage unbalance. For example at 3% voltage unbalance, 

the unbalance in currents varied from 17% to 21%. 

For the two test motors, under both conditions of volt­

age unbalance, i.e. and Vgg above and below the 

current unbalance was higher a,t 80% than at 100% of the 

rated load for the same percentage of unbalance in voltage. 

This is because of the greater spread and lower average value 

of currents at lighter load. 



120 

30 

25 

20 

LU 
o 
z 
< 
_J 
< 
m 
z 
3 

o: 

O 

15 

10 

• 10 hp U-frame 80% load 

010 hp U-frame 100# load 

O 10 hp T-frame 80% load 

^10 hp T-frame 100# load 

_L ± 
1 

Vi3 and Vgg 
2 1 0 

^ ̂12 
VOLTAGE UNBALANCE (%) 

Vi3 and V23 
3 4 

> V12 

Figure 60. Voltage unbalance vs. current unbalance of 10 hp 
U-frame/ 220 volts and T-frame, 230 volts test 
motors operated on three-phase power supply. 
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Winding temperature 

Figure 61 shows the temperature rise in the windings 

of motors at 80 and 100% of the rated load for various per­

centage unbalance in voltages. The temperature rise was a 

minimum with the motor operated with balanced voltages and 

increased with the increase in voltage unbalance. An un­

balance in line voltages produced circulating currents in 

2 
the motor winding and thus higher copper losses, I R, in 

the stator and rotor. Unbalanced voltage can also cause 

2 
nonuniform distribution of stator I R losses. William (110) 

found in an experiment with a 10 hp three-phase motor that 

a 11% unbalance in voltage caused 59% of the total stator 

copper losses to occur in one phase of the motor. 

The U-frame and T-frame motors used in the study had 

class A and class B insulation, respectively. The insula­

tion temperature and life differences between the two motors 

are explained in Figure 62. Insulation life of a motor is 

reduced to half when operated continuously at 10°C higher 

temperature. The T-frame motor had a higher temperature 

rating per frame size than the U-frame motor. A given change 

in load caused a greater change in temperature rise for the 

higher temperature T-frame, class B motor. This effect is 

shown in Figure 61. For the same unbalance in voltage, the 

increment in temperature rise in the T-frame motor windings 

with increase in load from 80 to 100% of the rated, was twice 

the value in the U-frame motor. 
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Figure 61. Temperature rise vs. voltage unbalance of two 
test motors operated on three-phase line power. 
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Figure 62. Typical motor winding life vs. temperature for 
commonly used classes of insulation. 

Unbalance with Phase Converter 

Current unbalance and temperature rise 

Figures 63 and 64 show the effects of voltage unbalance 

on the unbalance in line currents and temperature rise of a 

three-phase motor operated from an autotransformer-capacitor 

phase converter and rotary phase converter, respectively. 

The experimental data corresponding to these figures are 

given in Tables 10 and 11. 



124 

As shown in Figure 63, the curves for the current un­

balance and temperature rise of a 10 hp, U-frame 220 volt 

motor operated from an autotransformer-capacitor phase con­

verter are very similar to those obtained with the motor 

operated from three-phase line power, Figure 60. With the 

capacitor size and transformer output voltage adjusted for 

100% motor load, the three-phase voltage output is very 

nearly balanced with the motor loaded to its rated horsepower. 

An overload on the motor causes unbalance due to voltage 

and Vgg being less than the single-phase voltage, A 

lighter load increases and above the value of 

and thus results in an unbalance in three-phase voltages. 

The type of unbalance due to overload on the motor, 

i.e. and less than had a more severe effect on 

winding temperature than the unbalance due to lighter load 

on the motor. This is because of the higher line currents 

drawn by the motor to produce the rated horsepower with 

voltages and lower than nominal. The maximum tem­

perature rise recorded was 90®P which is less than the allow­

able rise 126°F for class A insulation. Though, the maximum 

current unbalance was recorded with a lighter load on the 

motor, the motor ran cooler because of lower than rated line 

currents. 

The current unbalance of the 10 hp, T-frame 230 volts 

motor operated from a rotary phase converter varied from 
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Voltage unbalance vs. current unbalance and temperature rise of a 10 
hp, U-frame motor with an autotransformer-capacitor converter adjusted 
for balanced operation at 100% load. 
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Figure 64. Current unbalance and temperature rise vs. volt­
age unbalance of a 10 hp T-frame 230 volts motor 
with a rotary phase converter. 

13% to 23%. Because of the design of the newer T-frame 

motor, the unbalance in voltage due to overload on the motor 

increased the winding temperature rapidly. The maximum tem­

perature rise of 175°F recorded at 4.5% voltage unbalance ex­

ceeded the allowable rise, 162®F, for class B insulation. 

Experimental data showed that voltage unbalance in the 

three-phase output of phase converters caused by an overload 
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Table 10. Voltage and current unbalance and temperature rise 
of a 10 hp/ U-frame motor operated from an auto-
trans former-capacitor phase converter adjusted for 
balanced operation at 100% load. 

Load 
% of 
rated Vl2 ^23 

(D 

Voltage 
unbalance 

% -^1 l2 I3 

Current 
unbalance 

% 

Temp, 
rise 

(OF) (OC) 

70 220 241 232 4.8 18.2 18.6 28.0 29.6 66 36.4 

80 220 235 230 3.6 21.0 19.6 27.6 21.4 64 35.5 

90 220 228 226 2.1 24.8 22.0 26.8 10.2 62 34.4 

100 220 220 222 0.6 27.6 26.0 26.4 3.5 65 36.1 

110 220 211 219 2.6 33.8 31.2 25.8 14.9 73 40.5 

120 220 158 213 5.9 40.0 38.0 25.0 27.1 92 51.1 

Table 11. Voltage and current unbalance and temperature rise 
of a 10 hp, T-frame, design B motor operated from 
a rotary phase converter. 

Load Voltage Current Temp. 
% of „ unbalance _ unbalance rise 
rated ^12 ^23 ^13 % "^1 ^2 ^3 % (Op) (Oc) 

70 230 223 220 2.53 18.4 22.0 16.4 16.0 115 63 .9 

80 229 220 218 3.00 22.4 25.0 18.Q 17.0 123 68 .3 

90 228 216 217 3.48 24.8 27.6 19.2 19.5 135 75 .0 

100 227 213 215 3.97 28.4 31.2 21.2 21.3 148 82 .2 

110 227 210 214 4.61 32.0. 34.0 23.2 22.0 175 97 .2 
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on the motor or because of lower single-phase input voltage 

may be detrimental to the motor life. The voltage unbalance 

caused by a load less than the full load and single-phase 

voltage higher than rated has less serious temperature rise 

and in many cases may be acceptable. 
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PERFORMANCE CHARACTERISTICS OF MOTORS OPERATING . 
FROM OPEN-WYE TYPE PHASE CONVERTER 

Open-wye type phase converters are usually recommended 

for use with single-speed, dual voltage wye connected three-

phase motors. As illustrated in Figure 65, it is necessary 

to bring out three additional leads, 10, 11, and 12, on the 

motor for proper connection of the open-wye type phase con­

version system. The phase shifting capacitor, C, is con­

nected in series with phase c of the motor. 

Figure 65. Modified winding connection of a three-phase 
motor connected to an open-wye type phase con­
verter. 
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The purpose of this part of. the study was to determine 

the size of capacitance C that would allow a three-phase 

motor to be loaded up to its rated horsepower when operated 

from a single-phase power supply. A 10-hp, 230 volts, T-

frame and a 10-hp, 220 volts, U-frajtie motor were operated 

from an open-wye type phase converter. Both motors were 

tested with two different values of capacitance, 280 and 420 

microfarads. 

Figures 66 and 67 show line currents and line to line 

voltages of a 10-hp, 220 volts, U-frame motor loaded from 40 

to 80% of the rated torque with c = 280 microfarads. Because 

of excessive vibration, the test motor could not be loaded 

beyond 80% of the rated capacity. The experiment was re­

peated on the same motor with a capacitance value of 420 

microfarads. The graphs of line currents and line to line 

voltages for load range of 60 to 120 per cent of rated are 

shown in Figures 68 and 69 respectively. Experimental data 

corresponding to Figures 66 through 69 are given in Tables 

40 and 41 in Appendix C. 

The line currents appear to indicate severe unbalance. 

Because of the way the motor winding wag connected, however, 

the three line currents can not be compared to that obtained 

with the usual operation from a three-phase power line. In 

reality, the test motor with, modified winding connection 

operated as a two-phase motor. 
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The single-phase line current, I^/ in Figure 65 is 

vector sum of currents in phage ab ajid phase c. At no load, 

the current through the capacitor phase, I^, was very high 

and produced severe vibrations in the motor. As the load on 

the motor was increased, showed slight variation. Current 

is considerably higher than because is vector sum 

of currents and Ig. Curves for and Ig are nearly 

parallel for the range of load on the test motor. Both cur­

rents, however, increased with the load. 

Voltage Vgg, the voltage across capacitors C, was the 

highest. This voltage was the vector sum of voltage across 

winding c, and single-phase voltage across phase 

ab of the motor. 

By using the correct value of oil capacitor the current 

Ig in phase ab as related to in phase c can be displaced 

by nearly 90°. The test motor will operate practically as 

though it was fed from a two-phase power line. Voltage 

across phase c is nearly in quadrature with the line voltage 

across phase ab. 

Perfect two-phase operating conditions occur at only 

one value of load for a given value of capacitance. As the 

load changes, the magnitudes of current and phase angle 

deviates from a true two-phase operation. Tests showed 

that for a 10-hp, general purpose, V-frame, induction motor, 

capacitors sized at 40 microfarads per motor horsepower would 
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provide nearly two-phase operating conditions of a three-

phase motor loaded tQ its r^ted capacity. 

The experimental data on a lO-hp, 230 volts, T-frame, 

NEMA design B motor operating from an open-wye type phase 

converter with C = 280 and 420 microfarads are given in 

Tables 42 and 43 in Appendix C. The efficiency of both 

motors was slightly lower than on three-phase line power 

through out the range of loads. Slip of the motors increased 

rapidly with overload. 

To avoid stalling and overheating of a motor operated 

from an open-wye type phase converter, caution should be 

exercised not to exceed 100% of the nameplate horsepower. 

The open-wye phase conversion system is less expensive 

than rotary and autotransformer-capacitor converters and, in 

applications where low starting torque is required and the 

load on the motor does not fluctuate, this system will 

operate three-phase motors from single-phase power. 
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EFFECTS OF STARTING CAPACITANCE ON LOCKED-ROTOR TORQUE 

A typical torque-speed curve of a three-phase, squirrel 

cage, design B motor operated from three-phase power is 

shown in Figure 21, The locked-rotor, pull-up, and break­

down torques are identified on the curve. According to the 

ASA (3) and NEMA (72) specifications, a 5-hp, squirrel cage, 

230 volts, three-phase, design B motor with rated voltage 

and frequency applied should produce locked-rotor, pull-up, 

and breakdown torques of 185, 225, and 130 per cent of the 

full-load torque respectively. 

The torque characteristics of a three-phase motor 

operated from a phase converter usually are different in 

values than those obtained with three-phase line power. 

Starting torque is reduced considerably (22, 23) and break­

down torque is also lower (49). 

Design Equations 10 and 11 for the autotransformer-

capacitor phase converter give the optimum values of param­

eters i.e., size of the capacitors and transformer output 

voltage for the balanced steady state operation of a three-

phase motor. These equations do not determine the capacitor 

size needed for starting conditions. If started with only 

the running capacitance in the circuit, the motor would have 

very little starting torque. For example, the torque-speed 

curve closest to the Y-axis in Figure 70, was obtained for 

a 5-hp, 230 volts, T-frame, NEMA design B, three-phase motor 
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Figure 70. Dynamic torque-speed characteristics of a 5-hp, 
T-frame, design B, three-phase motor operated 
from an autotransformer-capacitor-phase con­
verter . 
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operated from an autotransformer-capacitor phase converter 

with running capacitance of 150 microfarads. A similar curve 

for the same motor and converter but, with 180 microfarads 

of running capacitance shows a slight improvement in the 

locked rotor, pull-up and breakdown torque of the motor. 

For a motor to perform properly, the locked-rotor and 

pull-up torques must exceed the load torque requirements by 

a margin great enough to accelerate the load to the operating 

point in a short period of time, generally no more than 10 

seconds. The torques available from the test motor with 

capacitance of 150 or 180 uF would be insufficient to start 

a load that requires a 5-hp motor for steady state operation. 

Locked-rotor and pull-up torques can be improved by 

placing more capacitance in the circuit for the duration of 

the starting cycle. Common practice has been to use electro­

lytic capacitors because of their lower cost, high capaci­

tance, and smaller size. Electrolytic capacitors, however, 

have short duty cycles and should be disconnected at about 

90% of the full load speed of the motor. Several switching 

arrangements to switch the electrolyte capacitors out of the 

circuit have been applied successfully (32, 86), 

The effects of starting capacitance on the torque-speed 

curve of the test motor are shown in Figure 70. The locked-

rotor torque of the 5-hp motor was improved to 36,6 pound-ft 

by adding 1250 microfarads of electrolytic capacitance to the 
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starting circuit. This is about 240 per cent of the full 

load torque of the motor, The torque-speed curve beyond 

the point where electrolytic capacitors are removed from 

the circuit,, overlaps the torque curve of motor obtained with 

180 microfarads of running capacitance alone. The torque 

available with the running capacitance alone in most applica 

tions is sufficient to accelerate the load to the operating 

point. 

To find the optimum size of electrolytic capacitors 

that would give a maximum possible locked-rotor and pull-up 

torque, tests were conducted on a 5-hp, 3-phase, 230 volts, 

T-frame, design B motor. The experimental data in graphical 

form are shown in Figures 71 and 72. 

To improve the starting torque of the motor by using 

electrolytic capacitors, it is important for the single-

phase line voltage to be at its rated value. Lower single-

phase voltage would reduce the effect of starting capacitors 

on the locked-rotor torque. For example, at 100% of rated 

input single-phase voltage the locked rotor torque was 35 

pound-feet with 700 microfarads and decreased to 31 pound-

feet at 95% of rated voltage. When low voltage at starting 

of the motor is expected, the value of electrolytic capaci­

tance should be increased to offset the reduction in locked 

rotor torque. At 95% of the rated voltage, it was possible 

to obtain 35 pound-feet of locked rotor torque by increasing 
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the starting capacitance from 700 to 1040 microfarads. 

Graphs in Figure 72 show that holding single-phase 

input voltage constant, an increase in starting capacitance 

improved the motor locked-rotor torque. This is because of 

phase shift in the artificial phase voltage to about 120 

electrical degrees apart from the other two phases, giving 

approximately three-phase conditions during the starting 

cycle. Beyond a certain value of capacitance, however, the 

effect of additional capacitors is relatively very small. 

For example, for rated line voltage, locked-rotor torque 

was 23 Ib-ft with 400 yF, 32 Ib-ft with 600 yF, and 36 Ib-ft 

with 800 yF. An additional 200 yF in the circuit improved 

the locked-rotor torque to 37 Ib-ft, an increase of 1 Ib-ft 

over that obtained with 800 yF. 

The test data on an autotransformer capacitor phase 

converter operated 5-hp three-phase motor with single-phase 

voltage at rated value showed that electrolytic capacitors 

sized at 180 yF per motor horsepower would give locked-

rotor and pull-up torques slightly higher than NEMA specifi­

cations for the motor. The nearly maximum locked-rotor 

torque was obtained with 200 JiF per horsepower. Starting 

capacitance larger than 200 jiF per horsepower had a very 

little increase in the starting torque of the motor, 

Starting capacitors have similar improvement in the 

locked-rotor and pull-up torques of a three-phase motor 
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operated from various types of phase converters. The 

effects of starting capacitors on the dynamic torque-speed 

characteristics of motors operated from capacitor-only, 

open-wye type, and rotary phase converters are shown in 

Figures 89, 90, and 91 respectively in Appendix C. 
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POWER SERVICE DESIGN FOR PHASE CONVERTER 
AND ASSOCIATED THREE-PHASE MOTOR(S) 

A majority of the problems encountered with phase con­

verter applications have been due to improper installation 

and undersized wiring. In general, undersized wiring on any 

electric motor application will cause excessive voltage drop. 

This will reduce starting torque, and motors may not start 

or may start but take too long to accelerate the load, 

causing overheating of the motor in either case. 

Problems arising from undersized wiring and excessive 

voltage drop are more severe when three-phase motors are 

supplied power from a single-phase source through a phase 

converter. In many cases, phase converters are adjusted to 

give balanced three-phase output at the rated input voltage 

and rated load on the motor. Any drop in the single-phase 

voltage at the input of the phase converter, therefore, will 

usually result in unbalanced three-phase voltage output (40). 

Unbalanced voltage causes excessively high current in 

one or more phases of the fully loaded motor, and the aver­

age current often is higher than the nameplate rating. The 

consequences of higher than normal currents are excessive 

heating and premature deterioration of the motor. Low 

single-phase input voltage accompanied by an unbalanced 

three-phase output has a compound effect on the reduction 

of motor torque which impairs the performance of the phase 

converter, three-phase motor system. 
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Well designed services to phase converters can be 

achieved by selecting the proper transformer, conductor 

size, and overload protection. 

Transformer Size 

In the past, some of the commercially available rotary 

phase converters were rated by their motor starting capa­

bility. Commonly, rotary phase converters with a nameplate 

rating of 30 horsepower could be used to start and operate 

a maximum of a 30-hp single motor or several three-phase 

motors with a combined rating of 60 hp. However, there is 

a wide variation in recommendations on the maximum motor 

load that can be operated from a rotary phase converter. 

Following are a few examples : 

"The combined horsepower of all the motors to be 
operated simultaneously should not exceed 1.5 
times horsepower rating of the converter." (51) 

"Loading on a rotary converter can not be more than 
twice its rated horsepower before recommended tem­
perature rise is exceeded." (23) 

"The total horsepower load that can be connected 
to a rotary converter is two to four times the 
horsepower of the largest motor that may be 
started." (94) 

"Total horsepower of motors may be well in excess of 
the converter single motor rating. Generally a load 
four times the rating is acceptable, sometimes even 
more if voltage is maintained," (4) 

"Total motor load should not be greater than four 
times the size of converter," (12, 96) 
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With static phase converters, the rating problem did not 

usually arise because static converters were recommended 

for use with only one three-phase motor. 

Power suppliers select and install stepdown trans­

formers to serve farm loads. In many instances, trans­

formers are sized on the basis of converter horsepower 

rating and not for their total motor horsepower capability. 

In sizing a transformer for phase converter operated 

three-phase motors, the total horsepower of all the motors 

to be operated from the phase converter should be considered. 

Some manufacturers of phase converters recently have added 

the combined maximum horsepower capacity to the phase con­

verter nameplate. 

When selecting a transformer for three-phase motors 

operated on three-phase power or for a phase converter op­

erated, three-phase motor on single-phase power, economics 

usually dictates the sizing of the transformer bank to pro­

vide loads beyond the transformer rating. Because trans­

formers can withstand heating for short periods of time, 

seldom will obvious damage occur from overloading. If too 

small a transformer is used, the excessive voltage drop in 

the impedance of the transformer may give an unbalanced 

voltage output from the phase converter and thus reduce per­

formance of the three-phase motor. 

Often three-phase transformers sized by allowing 3/4 

KVA for each horsepower motor load have performed 
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satisfactorily. However, to provide for the losses in the 

phase converter as well as to avoid excessive voltage drop 

in the transformer winding, some of the electric power sup­

ply companies size a single-phase transformer for a phase-

converter three-phase motor system at 1 KVA per horsepower 

motor load. 

For applications where one transformer will supply a 

phase converter load as well as other loads, both loads 

should be considered. A transformer should be selected so 

that it provides one KVA per motor horsepower as well as 

the KVA requirements of the additional loads being served 

from it (11, 12, 40). 

Conductor Size 

Two different sizes of wires are required for the phase 

converter three-phase motor system: 1) those used to supply 

single-phase power from the meter pole to the phase con­

verter and 2) those used to supply three-phase power from 

the phase converter to the three-phase motor(s). 

To properly design an electrical wiring system, the 

following factors must be considered; 

1. Load current amperes 

2. Length of wires (distance between power source and 

load) 

3. Permissible voltage drop on lines 
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4, Conductor insulation and material 

5. Any national or local code requirements. 

The ampere load on the wires supplying three-phase power 

from the phase converter to the motor is determined by the 

size and type of motorCs) being used. The motor nameplate 

is the best source for determining current requirements at 

full motor load. Full load current of three-phase motors 

can also be obtained from table 430-150 of the 1971 National 

Electric Code (NEC). 

To determine the size of conductors required to serve 

single-phase power to a phase converter, knowledge of the 

current drawn by the phase converter at rated motor horse­

power load is essential. Unlike motors, phase converters 

are not standardized, and such information is not readily 

available. Even the manufacturers of phase converters may 

not be able to furnish this information because the amperes 

drawn by a phase converter will depend upon the size, type, 

and voltage rating of the three-phase motor(s) to be used. 

The efficiency of a phase converter will also affect the 

single-phase ampere load. 

The ampere load of phase converters supplying power to 

three-phase motors can be found by the following analytical 

method. Power requirements of a three-phase motor on three-

phase service can be written 
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Pj = = Vr Vj cos 4.^ (26) 

and the single-phase power drawn by a phase converter motor 

combination is 

»s 

where = power from three-phase line 

Pg = power from single-phase line 

= efficiency of three-phase 

= efficiency of phase converter 

<|)^ = phase angle of three-phase motor 

(J)g = phase angle of single-phase power 

The efficiency of a phase converter alone is not very mean­

ingful; therefore, an overall efficiency Tig of a phase con­

verter and its motor can be written as 

rig = n? 

Equation 27 is rewritten 

Pg = = Vg I3 COS (28) 

From Equations 26"and 28 

Vg Ig Is = \f^ "t 
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Voltage ratings of a converter and associated motor are 

usually the same; therefore, 

Ig rig Cos $g = \fT~ Cos (29) 

Efficiency of a three-phase motor operating from three-phase 

lines is, usually, greater than the combined efficiciency of 

phase converter and three-phase motor, but the power factor 

of the single-phase service to phase converter is higher 

than the power factor of three-phase motors on the three-

phase source. To determine the net effect of these two 

factors, the product of efficiency and power factor is 

defined by a constant K. Equation 29 can be rewritten as 

:s 4 

_ K 

:s =\/3^ iÇ 4 (30) 

When the values of Kg and are known, Ig can be easily 

computed. Table 12 shows typical values of and Cos cj)̂  

obtained from manufacturers' data. The calculated value 

of for 5 to 100 horsepower three-phase motors varies from 

0.73 to 0.85. 

Value of Ug and Cos $g for three brands of rotary phase 

converters obtained from experimental data are given in 

Table 13. The single-phase voltage was maintained at 230 

volts and motors were loaded to their nameplate ratings. 
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Table 12. Typical efficiency, power factor, and a constant 
KT value of three-phase squirrel cage, 1800 RPM, 
230 volts, design B induction motors at rated load 

hp 
^T 

Cos 
S 

5 .83 .88 .73 

7.5 .84 .88 .74 

10 .85 .89 .75 

15 .87 .89 .78 

20 .88 .90 .79 

30 .89 .90 .80 

40 .89 .91 .81 

50 .90 .91 

CM 00 

75 .91 .91 .83 

100 .92 .92 .85 

Values of rig and Cos ())g for static converters are sum­

marized in Table 14. The source of data is listed in the 

first column of the table. The author conducted experiments 

for the data for which the source is not given. The ratios 

of for rotary and static phase converters are given 

in Table 15. The ratio (K^/Kg) varies between 1.01 and 1.30. 

The average of the 17 values of (K^/Kg) reported in Table 14 

is 1.14, and 11 out of these 17 values are 1.13 or larger. 

The constant 1.15 was, therefore, considered as a typical 
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value for the ratio (K^/Kg). From Equation 30 

I = 1.732 X 1.15 X I 
S ^ 

= 1.99 = 2 (approx.) (31) 

Table 13. Experimental data on efficiency and power factor 
of rotary phase converter three-phase, 230 volts, 
design B induction motor combinations 

Converter. A Converter B Converter C 

Motor 
hp 

Cos (j)g Cos (j>g Cos (j)g 

15 .75 .93 .69 .75 .80 .60 .75 .93 .69 

20 .76 .82 .70 .79 .82 .65 .79 .91 .72 

30 .79 .91 .72 .79 .87 .68 .77 .91 .70 

2-15 .76 .95 .72 .78 .89 .69 .73 .92 .68 

2-20 .80 .99 .80 .83 .90 .74 .76 .88 .67 

The conductor size serving phase converters can be de­

signed by the relationship in Equation 31; i.e., ampere load 

of the single-phase line should be considered twice the full 

load ampere rating of the three-phase motor(s) being operated 

from it. 

To verify Equation 31, a study was conducted of the 

current drawn by various brands of rotary and static phase 

converters. Test data on ampere load of phase converters 
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Table 14. Experimental data on efficiency, power factor, 
and Kg of static converter three-phase motor 
cojnbinationg, with the motor at rated load 

Source Motor hp 'i.s. Cos..<j)g 
^S 

5 .75 

o
v
 C

O
 

. 66 

(59)* 7.5 00
 

.77 .60 

10 .77 

m
 

C
O
 

.65 

(108) 15 .81 .91 .73 

(41) 20 .74 .94 .70 

Numbers refer to appended references. 

Table 15. Ratios of (K^/Kg) 

Motor 
hp Kn 

Rotary Phase Converter 

Brand A 

Kg K 
Brand B 

T̂̂ Ŝ 

Brand C 

Static phase 
converter 

K, 

5 .73 — —  —  — —  — —  —  — —  —  — —  .66 1.11 

7.5 .74 — —  —  — —  — —  —  —  —  —  —  —  — —  .60 1.23 

10 .75 —  —  —  —  —  —  —  —  —  —  .65 1.16 

15 .78 .69 1.13 .60 1.30 .69 1.13 .73 1.06 

20 .79 .70 1.13 .65 1.21 .72 1.10 .70 1.13 

30 .80 .72 1.11 .68 1.18 .70 1.14 — — —  —  — —  

40 .81 .80 1.01 .74 1.10, .67 1.21. ••Ml» ^ 
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and current of associated three-phase motor(s) are given in 

Table 16. Data on rotary phase converters are in close 

agreement with Equation 31. Current drawn by static con­

verters is slightly lower than twice the current of three-

phase motors. This is because of the relatively lower losses 

in static phase converters. 

Table 16. Test data on ampere load of phase converters 
serving three-phase fully loaded motor(s) 

Rotary Converter Static Converter 

Motor 3-(j) ; 
hp Current Brand A Brand B Brand C Brand D Brand E 

5 14 24.0 29.8 21.4 23.0 

7.5 20 — --— ——— 35.4 42.0 

10 28 46.0 58.0 48.0 47.6 44.5 

15 41 70.0 81.0 70.0 69.0 67.0 

20 52 92.0 100*0 90.0 ———— ——— 

30 77 134*0 142.0 138.0 

4 0 100 163*0 161.0 194.0 

The size of the conductor can be computed with the fol­

lowing equations: 

For single-phase wiring 

Copper conductor CM = x Xg x L (32) 
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35 X Ig X L 
Aluminum conductor CM p » 

*D 
(33) 

For three phase wiring 

Copper conductor (34) 

30 X X L 
Aluminum conductor CM = ^ (35) 

where CM = area of conductor, circular mils 

I = current of load, amperes 

L = one way length of the conductor, feet 

Vg = voltage drop, volts 

In using the above Equations 32, 33, 34, and 35, the 

NEC requires that, for a single motor, the design value of 

Ig or should be 125% of the amperes for three-phase 

motor(s) given in NEC-Table 430-150. For a multi-motor appli­

cation, Ig or I^ are determined by adding 125% of the largest 

motor's amperes to 100% amperes of all additional motors. 

For satisfactory performance of phase converter op­

erated motors, voltage drop on the branch circuit and feeders 

should be limited to 5%. 

Motors driving varying or pulsating loads must be care­

fully matched to the phase converters. When sizing conduct­

ors for this type of load, it may be desirable to limit 

voltage drop to a maximum of 2%. For fluctuating loads, it 
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is recommended that feeders and branch circuit should be 

designed to carry the intermittent Incugh current of the 

phase converter rather than rated current. After the con­

ductor area in CM is computed, its size in American wire 

gauge (AWG) can be found from a CM-AWG conversion table. 

Such conversion tables are given in the Handbook (33). 

The wire size selected should be checked for its allow­

able ampacity from Tables 310-12 through 310-15 of the 1971 

NEC. If the allowable ampacity is less than the value, Ig 

or used in computing CM from Equations 32, 33, 34, or 

35, then the larger size conductors capable of carrying the 

current Ig or I^ should be used. 

Overload Protection 

Large horsepower motors, phase converters and their 

wiring represent a sizable investment. NEC requires that 

the system be protected against excessive currents because 

of the possibility of an overload on the motors or mal­

functioning of either the motor or the phase converter. 

As shown in Figure 73, a single-phase fused disconnect 

should be installed ahead of the phase converter. This dis­

connect is desirable even if the phase converter has its 

own circuit breaker. The size of single-phase disconnect is 

determined by the ampere load of the phase converter, I^, 
M 

used in sizing the single-phase conductors between the meter 
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Figure 73. Diagram showing a single-phase fused disconnect for protection of the 
phase converter and a magnetic starter for protection of the three-
phase motor. 
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pole and the phase converter. Fuses preferably should be 

of time-delay type to allow inrush current for starting the 

motors. 

To protect the windings of the three-phase motor(s) 

from continuous excessive currents, a magnetic starter 

should be installed between the phase converter and the 

motor. If more than one motor is used, each motor should 

be provided with a magnetic starter. 

The magnetic starter used with each three-phase motor 

is the same size and type regardless of whether the power 

source is a power line or a phase converter. Overload 

heaters in the magnetic starter should be sized according 

to the NEC recommendations. Overload current protection 

sensors require careful installation. A correct ambient 

compensated heater should be installed on each of the three 

lines from the phase converter to the motor. Very heavy 

current is drawn in the manufactured phase when a motor is 

running with an overload. This is particularly true on 

fluctuating loads like haylage filling applications. For 

example, a motor used on materials-handling blower may 

experience a wide variation of overload. Varying loads may 

cause instantaneous heavy current, which can result in 

unwanted tripping of the magnetic starter. Sometimes this 

is eliminated by bypassing the heater in the manufactured 

phase. This, however, may shorten the motor life. Also, 
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bypassing of the overload heater is a violation of Code 

recommendations. 

Because the voltage between the manufactured phase and 

one of the single-phase power line phase is not constant 

during starting or during any period of load variation this 

phase should not be used for the holding coil of the mag­

netic starter. 

Grounding 

For the safety of the operator it is important that a 

grounding conductor should be installed on all electrical 

equipment. For phase converter applications, the grounding 

conductors should be connected to the motor base, the phase 

converter enclosure, and the grounding provision on the 

meter pole. This will insure a continuous ground return to 

carry any fault current back to the transformer and minimize 

electrical shock hazard (109). 

Installation 

Figure 74 is a wiring diagram for a three-phase motor 

operated from an autotransformer-capacitor phase converter. 

The setting on a current limiting resistor in series with the 

coil of a relay number 2, a voltage sensitive relay, deter­

mines the time for which a bank of electrolytic capacitors is 

connected in the circuit for motor starting. 



tmiblng 

m#lay # 1 

StartUc CaMclter 

NsfMClc Scartar 

TlitM-phMt Meter 

Figure 74. Wiring connections for an autotransformer-capacitor phase converter 
and three-phase motor with a current limiting resistor. 
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Figure 75 shows a wiring diagram for multimotor appli­

cation from a single rotary phase converter. Each motor is 

protected by a magnetic starter. The capacitor bank assoc­

iated with an individual motor is connected in parallel 

with the main capacitor bank of the rotary unit when the 

motor is started. 

Figure 76 shows wiring connections of an open-wye type 

phase converter and a three-phase motor. Modified con­

nections of the motor winding are illustrated. A current 

limiting resistor, similar to that used in an autotrans-

former capacitor converter, is connected in series with the 

voltage sensitive control relay to drop the electrolytic 

capacitors out of circuit at the proper speed of the motor. 
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Figure 75. Wiring connections for a multimotor application from a single 
rotary phase converter. 
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Figure 76. Wiring connections for an open-wye type phase converter and a three-
phase motor with a current limiting resistor. 
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DISCUSSION 

Static and rotary phase converter g have piade possible 

the satisfactory operation of many three-phase motors from 

single-phase power lines on farms. Usually, the cost for a 

phase converter system is lower than the cost of extending 

three-phase power to the farm. By no means, however, should 

phase converters be considered a replacement for commercial 

three-phase power. 

Design Equations 10 and 12 eliminate the tedious empir­

ical methods for determining capacitor size and transformer 

turns ratio of an autotransformer-capacitor phase converter 

to give the balanced voltages and currents in a three-phase 

motor. It must be admitted that the simplification of 

design does not make an autotransformer-capacitor phase con­

verter the universal answer to all the applications of 

three-phase motors on farms with only single-phase power. 

Torque characteristics of a three-phase motor are changed 

when used with a phase converter. 

Perhaps the greatest limitation of an autotransformer-

capacitor phase converter is the need for electrolytic 

capacitors to obtain the desired starting torque. This is 

the only component used in autotransformer-capacitor con­

verters that has low reliability. A majority of the prob­

lems encountered in the use of autotransformer-capacitor 

phase converter can be attributed to the failure of one or 
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more electrolytic capacitors. The short duty cycle of 

electrolytic capacitors jnake the phase converter unsuitable 

for cyclical start-stop loads. 

The taps on the secondary of the transformer winding 

and capacitor size can be adjusted in the field to obtain 

close balance in the voltages and currents of a three-phase 

motor. Taking all the facts into account, however, this 

may not be always an acceptable procedure to the user of 

autotransformer-capacitor phase converter. 

A rotary phase converter has the advantage that it can 

be used for more than one three-phase motor. It also seems 

to be possible to obtain NEMA specified torques from a 

design B, general purpose induction motor operated from a 

rotary phase converter without the use of electrolytic 

capacitors (4). 

The oil type capacitors, usually, have long duty cycle. 

Any possibility of failure of running capacitors because of 

over voltage can be eliminated by designing the rotary con­

verter winding so that with the rotary converter idling, 

the voltage across the capacitor does not exceed the voltage 

ratings. The voltage output across terminals 2 and 3 in 

Figure 47 drops when the rotary converter is supplying power 

to a three-phase motor. 

The author from his experiences of working with several 

rotary phase converters has found that oil type capacitors 
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sized at 40 to 45 yF per motor horsepower give optimum 

balance in voltages and currents and fairly good dynamic 

torque-speed characteristics from the motor. More experi­

mental study should be made, however, before this is accepted 

as a design criteria. 

As a general rule, temperature rise of the three-phase 

motor windings has been found to be higher with phase con­

verters than those with three-phase line power. In most 

cases the rise does not exceed the allowable rise for the 

class of insulation used in the motor. 

Locked-rotor, pull-up, and breakdown torques of motors 

operated from phase converters are lower than that obtained 

with three-phase line power, although they may be sufficient 

to start and accelerate a majority of farm loads without 

affecting motor life. 

The author believes that measurement techniques used 

in this study can be improved. For example, external cur­

rent transformers were used to read the currents on 5 and 

10 ampere full scale ammeters. Better accuracy of measurement 

can be obtained by using ammeters calibrated with built in 

internal current transformers. 

The thermocouple method for measuring temperature was 

found to be quite reliable. The resistance method requires 

elaborate instrumentation. It is also time consuming and 

the machine has to be stopped after each test. Thermocouples 



166 

were installed in the lab and could AOt be embedded deep 

inside the motor windings. Thermocouples installed at the 

factory at the time of winding the stator would give better 

estimates of the hot-spot. 
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SUMMARY 

The need for three-phase motors on farms is discussed 

and the potential for phase converters is considered in 

meeting the demand to operate large motors from the existing 

single-phase power line. Technical literature on various 

types of phase converters is reviewed in some detail. 

Comparative limitations on the use of various types of 

phase converters are presented. 

Design equations are developed for the capacitor size 

and transformer turns-ratio to give balanced operation of a 

three-phase motor operating from an autotransformer-capacitor 

phase converter. Recommendations are made on adjusting 

parameters for fluctuating and variable loads. The effects 

of variation in the single-phase line voltage are given on 

the performance of three-phase motors operating from rotary 

and autotransformer-capacitor phase converters. 

Performance of three-phase motors are presented under 

various percentages of unbalance in their terminal voltage. 

This voltage unbalance was similar to the voltage unbalance 

that may occur with phase converters. Performance charac­

teristics are discussed for a 10 hp U-fr^e motor and a 10 

hp T-frame motor operated from an open-wye type phase con­

verter. Effects of the size of starting capacitance are 

determined on the locked rotor torque of a three-phase motor 

operating from em autotransformer-capacitor phase converter 
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that has been adjusted for balanced condition at rated motor 

horsepower. 

A method is developed for designing power distribution 

conductors for a phase converter and associated three-phase 

motor (s). The analytical equation developed for determining 

conductor size was verified experimentally. 
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RESULTS AND CONCLUSIONS 

The author believes that the results from the various 

phases of this study have met the objectives of the research 

project. The following conclusions are drawn from these 

studies ; 

(1) Equations 10 and 12 {C = 3063 (I/V) sin (j)}, 

{n = (1/2) + cot <j)} / are accurate and 

practical for determing capacitance value and 

transformer turns ratio in an autotransformer-

capacitor phase converter to give balanced cur­

rents and voltages to a three-phase motor for a 

given load. These equations are in terms of 

nameplate data and phase angle of the three-

phase motor and are of greater practical value 

than equations that require internal parameters 

like resistance and reactance of the motor. 

(2) Capacitance value and transformer output voltage 

in an autotransformer-capacitor phase converter, 

in application where the three-phase motor is 

oversized, should be adjusted for the load on the 

motor and not for the nameplate horsepower. If the 

load varies moderately, the two parameters should 

be adjusted for the average load and not for the 

maximum or minimum load on the motor. 
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Variations in single-phase voltage input to the 

phase converter results in unbalanced three-phase 

output voltages. 

Lower than nominal voltage will cause higher tem­

perature rise of a motor on an autotransformer-

capacitor phase converter. Higher temperature of 

the test motor operated from a rotary converter 

will be experienced with single-phase voltage 

higher than nominal. 

Locked rotor torque and pull-up torque of the 

general purpose, three-phase induction motor 

operating from the autotransformer-capacitor 

phase converter are higher than those obtained 

with the rotary phase converter. The breakdown 

torque, however, is higher with the motor ope­

rating on the rotary phase converter. 

The unbalance in currents due to overload on the 

motor at rated single-phase voltage or due to 

lower single-phase voltage accompanied with a 

rated load on the motor increases the winding 

temperature rapidly. An overload on motors 

operated from phage converter should be avoided 

and motor capacity must be derated when the single-

phase voltage is lower than rated. 
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(7) The open-wye type phase conversion system is the 

least expensive for applications where low start­

ing torque is required. The phase shifting capaci­

tance sized at 40 pf per horsepower gives optimum 

steady state performance. 

(8) To obtain maximum locked-rotor torque with a 

general purpose three-phase, induction motor 

operating from an autotransformer-cipacitor phase 

converter, starting capacitance should be sized 

at 200 yf per horsepower of steady state load on 

the motor. 

(9) Due to additional losses in the phase converter, 

the combined efficiency of motor-phase converter 

system is lower than the efficiency of the motor 

operating on three-phase line power. At no load 

or very light load on the motor, the motor losses 

and heating are greater with a phase converter 

than with balanced three-phase power. 

(10) A single-phase transformer to supply the power to 

a phase converter and its associated motor(s) 

should be rated at 1 KVA per horsepo-wer of motor 

load. Single-phase conductors serving phase con­

verters should be designed according to Equation 

31 {Ig = 2 ly} , considering ampere load, on the 

single-phase line to be twice that of full load 

amperes drawn by the three-phase mot or (s). 
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SUGGESTIONS FOR FURTHER STUDY 

Equations 10 and 12 for calculating the size of 

capacitors and transformer turns-ratio of an autotransformer-

capacitor phase converter were found to be of a greater 

practical value than design equations requiring motor 

internal parameters. To further the usefulness of this 

study an attempt should be made to develop a similar equa­

tion to give the size of capacitors and rotating unit of the 

rotary phase converter for balanced operation of a given 

motor. This equation should be in terms of nameplate data 

of the converter and motor. The investigation probably 

should be extended to developing a general equation that may 

be applicable to one or multimotor applications. 

Investigations should be made of a practical method of 

incorporating a feedback circuit in the design of autotrans-

former-capacitor phase converters. This would permit the 

control of output voltages and V23 by the three-phase 

line currents which are representative of the load on the • 

three-phase motor. It is believed that addition of the feed­

back loop to the autotransformer-capacitor phase converter 

circuit would allow use of a single motor, or a combination 

of motors, of various sizes within the rating of the phase 

converter. 

The optimum size of starting capacitors used in the 

rotary phase converter should be determined to give the 
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rated locked rotor torque of the three-phase motor. Further 

investigations should be made to determine the size of the 

starting capacitors needed for each of the additional motors 

to be used on a multimotor application of a rotary phase 

converter, preferably each motor should be capable of pro­

viding rated starting torque. 

The possibility should be investigated of using a sat­

urable core reactor in place of the capacitors in the rotary 

phase conversion system. Increasing the current through a 

reactor made of core metal with a very sharp limit of magnet­

ization would cause no substantial rise of voltage, once 

the saturation point is reached. This arrangement, perhaps, 

may give better voltage balance than that obtained from a 

rotary phase converter with capacitive reactance. 

The author studied the effects of voltage variations on 

the performance of phase converter operated three-phase 

motors, with the motor loaded to rated horsepower. It is 

suggested that investigations should be conducted to study 

the combined effects of voltage variations and motor 

operated at above and below the rated horsepower. 

An investigation should be made on the performance of 

three-phase synchronous motors operated from a single-phase 

power source through the rotary as well as autotransformer-

capacitor phase converters. 
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It would be useful to explore, by studying the voltage 

and current balance and temperature rise of three-phase 

motors, the application of the Voltano phase conversion 

system for farm loads. 
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Electric Motor Specifications 

Manufacturer - Century Electric Company, St. Louis, Missouri. 

Horsepower 5 
Phase 3 
RPM 1745 
Amps 14.4/7.2 
Volts 230/460 
Frequency 60 Hz 

Frame 184 T 
Type se 
Locked KVA CODE J 
Ins. Class B, Design 
Max. Amb. 40° C 
Service Factor 1.15 
Assigned Brand (1) 

B 

Manufacturer - General Electric, Fort Wayne, Indiana. 

Horsepower 5 
Phase 3 
RPM 1745 
Amps 14.2/7.1 
Volts 230/460 
Frequency 60 Hz 

Frame 184 T 
Type K 
Locked KVA Code H 
Ins. Class B, Design 
Max. Amb. 40° C 
Service Factor 1.15 
Assigned Brand (2) 

Manufacturer - Century Electric, St. Louis, Missouri. 

Horsepower 10 
Phase 3 
RPM 1750/1460 
Amps 27/13.5 
Volts 220/440 
Frequency 50/50 Hz 

Frame 256 U 
Type se 
Locked KVA Code G 
Ins. Class A 
Max. Amb. 40° C 
Service Factor 1.15 

B 

Manufacturer - Century Electric, St. Louis, Missouri. 

Horsepower 10 Frame S215 T 
Phase 3 Type SC 
RPM 1750 Locked KVA Code H 
Amps 25/12.5 Ins. Class B, Design B 
Volts 230/460 M^. Amb. 40O C 
Frequency 60 Hz Service Factor 1.15 
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Phase Converter Specifications 

Manufacturer - Ronk Electrical Industries, Nokomis, Illinois, 

Horsepower 15 Frequency 60 Hz 
Phase 3 Frame 254 T 
RPM 1800 Type RV (Rotary) 
Amps 38 Ins. Class B 
Volts 230 Max. Amb. 40° C 

Manufacturer - Ronk Electrical Industries, Nokomis, Illinois. 

Horsepower 10 Output Volts 220 V, 3-<|) 
Phase 1 Frequency 60 Hz 
Amps 40, l-(j) Type 25 (Auto - Cap) 
Input Volts 220 V, l-(f) Temp, Rise 40° C 

Manufacturer - Ken Elliot Motors, Bossier City, Louisiana. 

Horsepower 15 Volts 220/440, l-(j) 
Phase 1 Frequency 60 Hz 
Amps 57/29, 1-<|) Type Open Wye 

Manufacturer - Arco Electric Products Corporation 
Shelbyville, Indiana. 

Horsepower 15 Output Volts 230, 3-4) 
Phase 1 Frequency 60 Hz 
Input Volts 230 V, 1-4» Model C 

Manufacturer - Spindler Supply Company, Plymouth, Indiana. 

Horsepower 30 Output Volts 220, 3-<j> 
Phase 1 Frequency 60 Hz 
Input Volts 208/220, l-<j> Model 6 
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Dynamometer Specifications 

Manufacturer - Reliance Electric Cppipany, Cleveland, Ohio. 

V-S Drive, Rotating Power Conversion 

Horsepower 20 L.R. Amps 432 - 456/228 
Phase 3 Frame D 20 VS 
RPM 3530 DC Amps 72 
Amps 69.4 - 68/34 DC Volts 240 
Volts 208 - 220/440 Excitation 120V, 2.24 Amps 
Frequency 60 Hz 

Power Matched RPM - DC Motor 

Horsepower 20 
RPM 1750/4000 
Amp 72 
Volt 240 
Field Volts 240 
Field Max. Amps 2.27 

Field Amps 1.6/.325 
Windings Stab-Shunt 
Frame 287AT 
Type TR 
Insulation Class F 
Max. Amb. 40° C 

Ventilation Motor - Forced Ventilation 

Horsepower 0.5 Frequency 60 Hz 
Phase 3 Type P 
RPM 3450 Locked KVA Code 
Amps 2.2 Ins. Class A 
Volts 200 Max. Amb. 40° C 



200 

Transducer and Recording Instruments Specifications 

Strain Gage Reaction Torque Sensor 
Manufacturer - Lebow Associates Inc./ Oak Park, Michigan. 

Model 2540-2K, SN-106 
Rated Capacity 60 Lb-Pt. 
Max. Load 50% Overload 
Signal Sensor 4 arm strain gage bridge 
Usable Temp. (-50OF to 2000P) 
Linearity (0.1% of rated capacity) 

X-Y Recorder 
Manufacturer - Hewlett Packard, Mosley Division, California. 

Model 7000A 
Input DC 0.1 mv/inch - 20 v/inch 

AC 5 mv/inch - 20 v/inch 
Input Impedance 1,000,000 ohms 
Accuracy DC 0.2% FS, AC 0.5% FS, Time Sweep 2% FS 
Power 115/230 V, 50/60 Hz, 60 volt-Amp to 90 volt-Amp. 

Signal Conditioner 
Manufacturer - Lebow Associates Inc., Oak Park, Michigan. 

Model 7703 
Signal Output 60 Lb-Ft = 6 volt, 4000 RPM = 10 volt 
Capacity 0 to 10 volt analog signal 
Digital Panel Meter AN 2500 
Power Input 117 V Ac 

Universal EPut and Timer 
Manufacturer - Berkeley Division, Beckman inc., Richmond, Ca. 

Model 7350 
Volts 117 Ac 
Frequency 50-60 Hz 
Watts 270 

Temperature Recorder 
Manufacturer - Honeywell, Bpown Instruments Division, Pa. 

Model 153X60 P16-X^31 F1 Modified Range (75° F to 320° F) 
Range (-40° F to 140° F) Volts 115V AC. 60 Hz 
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Metering Instruments Specification 

Instrument Current Transformer 
Manufacturer - General Electric, Schenectady, New York. 

Type JP-1 
Frequency 25-125 
Amps 10/20/50/100/200/300/400/600/800:5 
Ratio 2/4/10/20/40/60/80/120/160:1 

Variable Transformers (Powerstat) 
Manufacturer - Superior Electric Company, Bristol, Connecticut. 

Type 1256-3P; 2312 
Primary volts 115/230 
Output Volts Range 0-270 
Max. PVA Output 22.7 at 84 Amps 
Frequency 50/60 Hz, l-if) 

Stepdown Transformer 
Manufacturer - Marcus Transformer Company Inc., Hillside, N.J. 

Type F Secondary Volts 120/240 
Primary Volts 480 Temp. Rise 80° C 
KVA 200 Percent Impedance 4.7 
Phase 1 Polarity ADD 
Frequency 60 Hz 

Voltmeters, Ammeters, Wattmeters, and Power Factor Meters 
Manufacturer - Yokogawa Electric Works (YEW), Tokyo, Japan. 

Accuracy 0.5% Full Scale 
Frequency 50-70 Hz 
External Temp. Influence 0.1% Full Scale 
External Field Influence 0.3% Full Scale 
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APPENDIX B; TYPES OF PHASE CONVERTERS 
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Figure 77. Capacitor type 
phase converter. 

3,3 2 Tla. 

Figure 78. Capacitor type 
phase converter, 

Figure 79. Capacitor type Figure 80. Capacitor type 
phase converter. phase converter. 
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Figure 81. Autotransformer-capacitor phase converter. 

Figure 82. Autotransformer-capacitor phase converter. 



Figure 83 (upper right). Rotary phase converter. 

Figure 84 (center). Open-wye type phase converter. 

Figure 85 (lower right). Rotary phase converter. 
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APPENDIX C: EXPERIMENTAL DATA 



Table 17. Average cost of 3-(f) mptors, l-(j) motors, and phase converters 
(All figures are list price in dollars) 

oëîignT Capacitor^Start Static Converter Rotary Converter 

GP, DP general purpose Identitication letters 
1800 RPM 1800 RPM A B C ~ D E F 

5 88 250 160 224 434 389 489 408 
7-1/2 111 350 264 284 568 621 — 590 
10 135 450^ 319 340 678 707 789 684 
15 180 900 434 469 886 945 997 908 
20 226 1000 534 575 1124 1209 1249 1136 
25 268 1170 671 716 1378 1540 1395 1504 
30 314 1300 764 820 1536 1548 1495 1668 
40 395 1600 962 1025 2134 1722 —  —  — —  2218 
50 477 2000 1150 1230 2588 2521 — 2686 

^Average estimated cost from price list of 5 major manufacturers. 

^Average estimated cost from price list of 3 major manufacturers.. 

^Many manufacturers do not make 1-^ motors larger than 10 HP. 
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Table 18. Locked-rotor torque of a 5-hp, T-frame, 230 volts, 
design B, three-phase motor vs. input line voltage 
at various values of starting capacitors used in 
an autotransformer-capacitor phase converter 

I-* V LRT l-(t) V LRT 
V % of Lb-Ft V % of Lb-Ft 

Rated Rated 

Starting Capacitance = 0 yF Starting Capacitance = 350 yF 

193 83.9 4.7 195 84.8 15.2 
206 89.6 5.2 207 90.0 16.5 
217 94.3 5.8 218 94.8 17.9 
230 100.0 6.1 230 100.0 20.0 
242 105.2 6.3 240 104.3 22,4 
252 109.6 6.8 254 110.4 24.9 
262 113.9 7.0 263 114.3 26.8 

Starting Capacitance = 114 yF Starting Capacitance = 468 yF 

196 85.2 7.1 194 84.3 18.5 
207 90.0 8.1 206 89.6 21.0 
221 96.1 8.8 218 94.8 24.0 
231 100.4 9.3 230 100.0 26.5 
242 105.2 10.2 240 104.3 28.5 
251 109.1 10.8 252 109.6 31.0 
264 114.8 11.5 265 115.2 34.4 

Starting Capacitance = 236 yF Starting Capacitance = 582 yF 

196 85.2 11.0 195 84.8 22.5 
208 90.4 12.0 206 89.6 25.5 
218 94.8 13.4 218 94.8 28.5 
229 99.6 15.0 228 99.1 31.5 
240 104.3 16.0 241 104.8 34.9 
253 110.0 18.0 254 110.4 38.2 
265 115.2 19.8 264 114.8 41.8 
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l-({) V IJRT l-* V LRT 
V % of Lb-Ft V % of Lb-Ft 

Rated Rated 

Starting Capacitance = 700 yF Starting Capacitance = 927 yF 

196 85.2 25.7 195 84.8 29.1 
207 90.0 29.0 207.5 90.2 31.5 
218 94.8 32.0 218 94.8 33.5 
230 100.0 35.0 231 100.4 36.5 
242 105.2 38.0 241 104.8 41.0 
253 110.0 41.0 253 110.0 44.0 
264 114.8 44.7 264 114.8 48.0 

Starting Capacitance = 814 yF Starting Capacitance = 1041yF 

195 84.8 27.5 195 84.8 30.7 
207 90.0 30.0 206 89.6 32.2 
218 94.8 33.0 219 95.2 34.6 
228 99.1 36.0 231 100.4 37.5 
241 104.8 40.0 243 105.6 41.6 
252 109.6 43.2 254 110.4 45.5 
261 113.5 47.0 265 115.2 50.0 
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•Figure 86. Torque-speed curve of a 5-hp, design B, 230 
volts, three-phase motor at various three-
phase line voltages. 
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"Figure 87. Torque-speed curves of an autotransformer 
phase converter operated 5-hp, design B, 
230 volts/ three-phase motor at various 
single-phase line voltages. 
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Figure 88. Torque-speed curves of a rotary phase converter 
operated 5-hp, design B, 230 volts, three-phase 
motor at various single-phase line voltages. 
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Figure 89. Dynamic torque-speed characteristics of a 10-hp, 
three-phase motor operated from a capacitor type 
phase converter. 
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Figure 90. Dynamic torgue-speed characteristics of a 10-hp, 
three-phase motor operated from a rotary phase 
converter. 
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Figure 91. Dynamic torque-speed characteristics of à 10-hp, 
three-phase motor operated from an open wye type 
phase converter. 
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Table 19. Performance characteristics data of a 10-hp, U-
frame, 220 volts, three-phase motor on three-
phase power supply. 

LOAD 
L&FT 

LOAD 
%0F 
RATEC 

RPU H 
AMP 

H 
AMP 

H 
AMP 

''/2 
VOLT 

^23 
VOLT 

^3 
VOLT 

^IN 
VOLT 

^2N 
VOLT 

^3N 
VOLT 

^N6 
VOLT 

KW,^ KW3F^ 3-(P 

PFCn 
3-^ 

ppai 
SLIP 

% 

EFFIO lENCr 
% 

0 0 laoo 11.0 10.8 9.6 220 220 220 /J6 -.80 127 127 I2&5 7.1 J2 .28 J6 .14 .15 0 0 

3 10 1796 11.4 11.4 10.2 220 220 220 /.7S -.48 127 127 I26J5 7.0 .35 52 40 .31 .31 .22 58-S 

6 20 1792 12.4 12.4 11.2 220 220 220 2.16 -JOB 127 127 1265 7.3 £8 30 B4 A5 A7 A4 71.7 

9 30 1768 13.4 13.6 12.6 220 220 220 264 -32 127 127 126.5 7.2 .96 IÛ2 .96 59 .59 .67 75.6 

12 40 I7B4 14.8 14.8 14.0 220 220 220 308 .64 127 127 126.5 7.2 L20 136 120 .67 .66 39 8Q2 

15 50 I7B0 16.6 16.6 15.6 220 220 220 3S2 LOO 127 127 126.5 7.2 /.48 USO 148 .73 .72 I.II 82.5 

/a 60 1775 IBS IB3 17.6 220 220 220 4.04 lAO 127 127 1265 7.3 176 m 104 .77 .76 1.39 823 

21 70 1771 203 203 19.6 220 220 220 4.4B 1.76 127 127 1265 7.0 200 320 200 30 30 1.61 83.6 

24 80 1767 23J0 22.8 220 220 220 220 5.00 2.08 127 127 126.5 7.2 232 248 232 32 31 133 84.3 

27 90 1763 252 25.2 24.4 220 220 220 5.52 2.44 127 127 126.5 7.6 2£4 2.72 2£4 34 33 2JOS 84.3 

30 100 1758 2BO 27.6 27.0 220 220 220 6.12 2.72 127 127 126.5 7.5 2S6 236 236 34 34 2J3 84A 

33 no 1754 30.0 300 283 220 220 220 6.56 3.08 127 127 I26£ 7.8 320 3.36 320 35 35 2.55 85.1 

36 120 1747 32A 324 31.2 220 220 220 7.12 3A0 127 127 1265 7.8 352 360 3.48 36 35 2.94 85.1 

39 130 1740 35.4 35J0 34.0 220 220 220 7.72 3.72 127 127 I26.S 8.2 330 3S2 330 .86 35 3J3 84.8 

42 140 1732 382 38.0 3SA 220 220 220 ejs 4.04 127 127 1265 8.4 4.12 4.24 4X38 .87 36 3.78 84.2 

45 150 1723 41.6 4L2 38.6 220 220 220 9.08 4.36 127 127 1265 8.2 4.48 4.60 4.40 37 36 4L28 813 
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Table 20. Performance characteristics data of a 5-hp, T-
frame, -230..volts, three-phase motor on t^ree-
phase supply. 

LOAD 
IBF7 

LOAD 
%0F 
MTEC 

RPM h 
AMP 

l2 
AMP 

l3 
AMP 

^12 
VOLT 

^23 
VOLT 

^13 
VOLT 

KW/ KWz V,N 
VOLT 

^2N 
VOLT 

^3N 
VOLT 

KW,N KW2N K^3N 3-(j) 

PF 
SLIP 
% 

EFFIO 
lENO 
% 

0 0 IBOO 8.4 8.3 8.0 230 230 230 /./4 -.70 133 133 133 .13 .17 .13 .14 0 0 

3 20 1790 8.6 8.6 8.3 230 230 230 1.48 -.32 133 133 133 .35 .37 .35 .35 .56 64 

6 40 I7QI 9.6 9.4 9.3 230 230 230 1.96 .02 133 133 133 .65 .67 .63 .51 1.8 75 

â 60 1772 II.O 10.4 10.4 230 230 230 2.38 .36 133 133 133 .93 .91 .84 .61 1.6 80 

10.5 70 1769 11.6 11.6 11.2 230 230 230 2.68 .52 133 133 133 1.08 1.05 1.00 .65 1.7 81 

(2.0 BO /758 12.6 12.4 12.0 230 230 230 2.86 .76 133 133 133 1.18 1.24 1.16 .706 2.3 82 

13.5 90 1753 13.6 13.6 13.0 230 230 230 3.12 .96 133 133 133 1.34 1.40 1.31 .734 2.6 82.S 

15.0 100 1745 I4.e 14.6 14.2 230 230 230 3.32 L20 133 133 133 1.50 1.56 1.48 .775 3.1 83 

16.5 110 1739 15.6' 15.6 15.0 230 230 230 3.58 1.28 133 133 133 1.62 1.66 1.60 .774 3.4 83.8 

IB.O 120 1734 16.4 16.4 I5.B 230 230 230 3.78 1.42 133 133 133 1.73 1.77 1.70 .79 3.7 85 

19.5 130 1727 17.2 17.2 16.6 230 230 230 3.98 1.56 133 133 133 1.84 1.88 1.82 .80 4.1 86 

21.0 140 1714 19.4 19.2 18.6 230 230 230 4.12 1.84 133 133 133 2.00 2.04 1.98 .83 4.8 85 



Table 21. Performance characteristics data of a 10-hp, U-frame/ 220 volts, three-
phase motor with autotransformer-capacitor converter adjusted for bal­
anced operation at 80% of the rated load. 

LOAD 
LB^FT 

LOAD 
%of 
RATED 

RPU h 
AMP 

h 
AMP 

b 
AMP 

*^2 

VOLT 
^23 
VOLT 

^3 

VOLT 
kiv, klvg ""IN 

VOLT 
^2N 
VOLT 

^SN 
VOLT 

^NG 
VOLT 

X^IN 3-0 
PF 

SLIP 
(%) 

^7-2 

VOLT VOLT 
/ - $  

I 
AMP 

l-<P 
V 

VOLT 

l-(p 
KW 

1 - 0 
PFcn 

1 - (p 
PF(2) 

EFFIO 
lENCr 
% 

IB 60 1777 15.2 172 23.2 220 234 220 3.48 2.04 134 131 125 66 .96 1.36 2.46 .91 I.2B 384 355 29.5 220 6.00 .94 .93 74.6 

21 70 1772 /8.8 /8.a 224 220 228 226 4.24 2.00 130 <28 126 66 2.08 /.80 2.40 .85 1.56 384 347 32.0 220 6.70 .96 .95 780 

24 eo I76B 223 22.0 22.4 220 220 223 5/2 1.96 12 B 126 126 64 2.44 2.36 2.32 .79 1.78 384 340 35.2 220 7.50 .98 .97 80.0 

27 90 1761 27.2 25.2 21.6 220 2/3 220 6.00 I.BB 123 123 126 62 2.80 2.84 2.26 .74 2.17 384 332 38,0 220 &.40 39 I.O 80.0 

30 100 1753 32.0 29.6 21.2 220 205 2)0 696 I.B4 120 121 126 59 3.20 3.60 2.1 Q .70 2.61 384 325 430 220 9.30 .99 .98 80.2 

33 110 1742 3ao 36.4 20.4 220 195 2/3 B.I6 1.76 114 IIB 127 56 3.70 4.16 2.08 .67 322 384 3/6 47.0 220 10.40 I.O 1.0 79.0 

36 120 1726 45.6 45.2 20.0 220 IB2 206 9.60 1.64 105 114 126 51 4.30 5.00 1.92 .63 4.11 384 305 53.5 220 11.74 .99 .99 76.2 



Table 22. Performance characteristics data of a 10-hp, U-frame, 220 volts, three-
phase motor with autotransformer-capacitor converter adjusted for bal­
anced operation at 90% of the rated load. 

LOAD 
LB-FT 

LOAD 
%0F 
RATED 

F>PM 
AMP AMP 

h 
AMP 

^/2 
VOLT 

^23 
I'Oi.r 

^13 
VOLT 

/fW, KWg 
1/Oi.r 

^2N 
VOLT 

Ksw 
VOLT 

^NG 
VOLT 

K»2N 3-4» 

PF 
SLIP 
% 

Vtz 
VOLT 

Vc 
VOLT 

1- (t> 
I 

AMP 
/•• $ 
/ 

VOLT 
/- (J> 

KW 

/- <J) 

PF(/) 

1- $ 

flF(2J 

E^RF/O 
rftCK 
% 

21 70 1773 17.6 /8.4 24.8 220 234 228 4.04 2.24 /33 ISO 127 68 2.04 1.62 2.62 .90 1.5 394 344 33.0 220 6.8 .93 .93 77.0 

24 80 1768 21.6 21.0 24.0 220 227 226 4.84 2.24 130 128 126 66 240 2.12 2.58 .84 1.78 393 340 36£ 220 7.6 .94 .94 78.5 

27 90 1761 25.0 24.0 24.0 220 220 223 5.84 2./6 126 125 126 64 2.80 2.72 2.48 .78 2.17 393 337 39.5 220 8.4 .97 .96 80.0 

30 lOO 1754 30.0 28.8 23.0 220 2/0 220 6.80 2.08 122 123 127 61 3.20 3.28 2.42 .74 2.55 393 335 44.0 220 9.3 .98 .96 80.2 

33 no 1745 36.0 34.4 22.4 220 200 2/4 7.84 2.00 116 120 126 57 3.64 3.92 2.26 .70 3.05 392 327 48.0 220 /OX) S9 .98 70.0 

36 120 1729 42.8 42.4 2/.6 220 <88 208 9.12 /.84 no 118 127. S3 4.14 4.74 2./0 .65 3.94 392 317 52.5 220 //.4 1.0 .99 78J5 

to 
M 
ko 



Table 23, Performance characteristics data of a 10-hp, U-frame, 220 volts, three-
phase motor with autotransformer-capacitor converter adjusted for bal­
anced operation at 100% of the rated load. 

UOAD 
LB-FT 

Q
 U. 

Q
 

^
 O

 b
 

PPM h 
AMP 

h 
AMP 

h 
AMP VOLT 

*^23 
VOLT VOLT 

KWj KW^ *^//V 
VOi.7-

^2N 
VOLT 

K3A/ 
VOLT VOLT 

K*//V K^2N l̂ 3N 3-0 

PF 
SLIP 

% 
^T2 

VOLT VOLT 
/ - $  

1 
AMP 

/ - $  

V 
VOLT 

/ -  $  

KW 
/ - $  

PFCO 
/ - $  

PF(2) 
EFFIC lENCf 
% 

21 70 1773 IB.2 IB.6 26.0 220 241 232 3.76 2.72 /38 134 126 71 2.08 1.32 3.04 .96 1.50 403 358 37 220 7.0 A 66 £60 74.6 

24 80 1769 21.0 19.6 27.6 220 235 230 4.56 2.64 135 131 126 68 2.40 1.80 3.00 .90 1.72 403 355 39 220 7.7 .906 B97 77.S 

27 SO 1765 24.8 22.0 268 220 228 226 5.36 2.56 131 I2B 126 67 S.70 2.32 2S2 .86 1.94 400 355 41.5 220 8.5 S34 S3I 79.0 

JO 100 1760 28.6 26.0 26.4 220 220 224 6.08 2.52 /28 127 /28 68 3.00 230 2JB0 .81 2.22 403 353 44.5 220 9.4 361 S60 79A 

33 no 1749 33.8 il.2 25.8 220 211 2/9 7.36 2.40 /22 127 126 62 3.52 3.52 2.72 .75 2B3 402 340 48.0 220 10.3 SBS S75 79.7 

36 120 1737 40.0 3B.O 2S.O 220 i9a 2/3 8.64 2.24 lie 122 123 57 4X30 4.24 2£0 .70 3.50 403 332 520 220 11.4 .996 S96 78.5 

39 130 17 IB 53.0 48.8 24.4 220 IQ3 204 IO.OQ 2.04 104 113 126 52 4.56 5.32 2.32 .66 4.56 402 317 58.2 220 12.8 .998 .999 75.8 

to 
to 
o 



Table 24, Performance characteristics data of a 5-hp, T-frame, 230 volts, three-
phase motor with autotransformer-capacitor converter adjusted for bal­
anced operation at 80% of the rated load. 

load 

LBTT 
LOAD 
%0F 
r47ec 

RPU j, 

AMP 
^2 

AMP 
h 

AMP VOLT 
^23 

VOLT 
^,3 
VOLT 

KWi KW^ 
VOLT 

''2N 
VOLT 

^3N 
VOLT 

^N6 
VOLT 

'<^2N 3-4» 

PF 
SLIP 
(%) 

^T2 
VOLT VOLT 

/- 4» 

J 
AMP 

1- $ 
V 

VOLT 

/-(J) 

KW 
/- (J) 

PFCn PF(2) 
EFFIG 
lENCY 
% 

9 60 I77i 9.4 11.2 13.0 230 242 237 2.08 .68 139 136 132 71.5 .86 .73 1.22 .75 1.5 316 302 14.0 230 3.12 .975 .97 72.7 

IO.S 70 1767 11.2 11.2 12.6 230 235 235 2.52 .68 135 134 132 69 i.oa .95 1.20 .71 ;.83 315 295 I5.B 230 3.56 .980 .980 74.0 

12.0 80 1762 13.2 12.2 12.4 230 230 232 2.96 .66 132 131 132 67 1.30 1.20 1.16 .67 2.11 350 286 tr.e 230 3.96 .980 .97 76.0 

13.5 90 I7S4 I4.B 13.0 12.2 230 224 230 3.34 .66 129 129 132 64.5 1.47 1.39 1.14 .65 2.56 350 282 20.2 230 4.36 .980 .95 77.2 

ISO lOO 1744 I7.Z /4.e li.e 230 215 226' 3.84 .62 124 126 132 62 1.72 1.67 1.09 .63 3.11 315 275 23.2 230 4.60 .975 .90 78jO 

I&5 110 1733 19.4 17.0 11.4 230 207 221 4.32 .60 120 124 132 59 1.94 1.94 1.04 .61 3.72 315 265 25.0 230 5.28 .965 .973 77.0 



Table 25. Performance characteristics data of a 5-hp, T-frame# 230 volts, three-
phase motor with autotransformer-capacitor converter adjusted for bal­
anced operation at 100% of the rated load. 

LOAD 
LBFT 

LOAD 
%0F 
Mjm 

BPU h 
AUP AUP 

^3 
AfJP VOLT 

ta 
VOLT 

^13 
VOLT 

KWf KWg ^,N 
VOLT 

^2N 
VOLT 

^3N 
VOLT 

^NG 
VOLT 

KW,^ Kt/V 3-t) 
PF 

SLIP '^r2 
VOLT VOLT 

1-0 
r 

AMP 

1-0 
V 

VOLT 

1-0 
KW 

1-0 
PFdJ 

1-0 
PF121 

EFFIO lENCr 
% 

10.5 70 1766 9.2 I2.Q 15.4 230 24 B 239 2 / 2  1.22 142.0 136.0 130.0 73.5 .94 .82 .162 9062 1.89 365 345 164 230 3.72 .990 .99 70.8 

12.0 80 1761 lO.B I2.e 15.0 230 243 236 2.50 I.20 139 136 131 71.5 •112 .101 .159 8543 2.17 365 340 17.92 230 4.08 .992 .99 73.7 

13.5 90 1759 II.B 13.2 14.84 230 240 235 2.70 1.20 I3B 135 132 70.0 .120 .113 .157 .8322 2£8 365 335 IB.70 230 4.42 .995 t.O 763 

15.0 too 1752 MA 14.4 14.6 230 230 230 3.38 LIS 132 132 132 67 .152 .152 .151 .7631 2.67 365 325 21.4 230 4.80 .999 .98 76.0 

(6.5 no 1741 15.6 15.2 14.4 230 227 229 3.60 1.14 130 130 132 65.5 .163 .162 .I4B .7438 3.28 365 324 2224 230 5.12 1.00 1.0 79.7 

18.0 120 1731 17.6 I6.B 14.0 230 220 225 4.04 L05 126 128 132 630 .182 J88 .143 .7014 3.83 365 316 24.0 230 5.52 .999 1.0 80.3 

I9.S 130 1715 2086 19.7 13.6 230 20B 217 4.6B 1.04 119 125 130 590 .211 .227 J35 •6720 4.72 365 307 26.8 230 6.14 .995 .997 77.3 

to 
to 
to 
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Current vs. load of a 5-hp motor with the con­
verter adjusted for balanced operation at 80% 
of the rated load. 
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Figure 93. Voltage vs. load of a 5-hp motor with the con­
verter adjusted for balanced operation at 80% 
of the rated load. 
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Current VS. load of a 5-»hp motor with the con­
verter adjusted for balanced operation at 100% 
of the rated load. 
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Voltage vs. load o^ a 5-hp motor with the con­
verter adjusted for balanced operation at 100% 
of the rated load. 
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O 3-PHASE OPERATION 

A 1-PHASE,BALANCED AT 80% 

. 1-PHASE,BALANCED AT ]00% 

9 4 

120 130 140 
LOAD C7. OF FULL LOAD TORQUE) 

Figure 9 6. Power input vs. load of a 5-hp motor with the 
converter adjusted for balanced operation at 
80, and 100% of the rated load. 
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Figure 97. Efficiency vs. load of a 5-hp motor with the con­
verter adjusted for balanced operation at 80, and 
100% of the rated load. 
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Figure 98. Power factor vs. load of a 5-hp motor with the 
converter adjustôd for balanced operation at 
80, and 100% of the rated load. 
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3-PHASE OPERATION 

A 1-PHASE,BALANCED AT 80% 
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• l-PHASE,BALANCED AT 100% 
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AO 
60 70 80 SO 100 no 120 150 140 

LOAD C7. OF FULL LOAD TORQUE) 

Figure 99. Slip vs. load of a 5-hp motor with the con­
verter adjusted for balanced operation at 80, 
and 100% of the rated load. 
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-Figure 100. Temperature rise vs. load of a 5-hp motor with 
the converter adjusted for balanced operation 
at 80, and 100% of the rated load. 
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Table 26. Effects of threé-'phAse voltage variation on the 
performance of 5-hp, T-fraraë/ ,230 volts, three-
phase motor. 

v/2 

VOLT 

*23 

volt 

^/3 

VOLT 

K^VG 

VOLT 

V 

%0F 

RATED 

LOAD 

LBFT 

RPU :/ 

AMP 

h 

AMP 

:3 

AMP 

kw, kwg ^IN 

VOLT 

^2N 

VOLT 

^3N 

VOLT 

X^IN X»3N PF SLIP 

% 

EFFIO 
lENCr 

% 

TEMP 

RISE 
°F 

196 136 196 196 a 5.2 15.2 1720 16.0 15.8 15.4 3.14 1.34 112 112 112 1.5 1.52 1.48 .84 4yf4 83 147 

208 208 208 208 90 15.2 1732 15.2 15.0 14.8 3.16 1,28 119 119 119 1.5 1.5 1.48 .82 3.78 84 130 

2IB.S 2I8.S 2/8.5 3IB.S 95 IS.2 I73B 14.6 14.6 14.0 3.24 1.18 126 126 126 1.49 I.SI 1.46 •82 3.44 85 122 

230 230 230 230 100 15.2 1745 14.6 14.4 14.4 3.36 1.06 132 132 132 1.52 1.48 1.50 SO 3.05 85 119 

24/. 5 24/. 5 241.5 241.5 105 15.2 1753 14.6 14.4 14.4 3.46 .96 139 139 139 1.53 1.54 1.50 .76 2.61 86 122 

253 253 253 253 110 15.2 1755 IS.4 15.2 15.2 3.72 .76 146 146 146 1.56 1.54 1.52 .69 2.50 86 129 

2645 264.5 264.5 264.5 115 15.2 1759 16.6 /s.-f !Q.O 4.04 .60 152 152 152 1.58 1.61 1.53 .63 2.28 81 148 

Table'27. Pull-up and break­
down torque. 

Y^VG 

VOLT 
%0F 
f?i17]7î 

P.U.T. 

LBFT 

B.D.T. 

LBFT 

190 82.5 26.0 27.75 

204 88.7 30.0 32.5 

216 94.0 33.5 36.5 

230 100 37.5 41.0 

241 104.8 41.0 44.75 

254 110.4 45.0 49.75 

261 113.5 47.5 52.5 

Table 28. Locked-rotor 
torque and 
current. 

Vg 

VOLT mSf 
h 

AMP 

I2 

AMP 

l3 

AMP 

II 

LRT 

LBFT 

200 87 77 79 79 78.3 32 

208 90.4 80 82 82 81.3 37 

217 94.3 82 84 84 83.3 37.4 

225 97.8 84 86 86 85.3 39 

230 100 87 89 89 88.3 45 

236 102.6 89 90 90 89.6 43 

244 106.1 91 94 94 93 46 J
j
 

no 92 96 96 94.6 55 



Table 29. Effects of single-phase voltage variation on the performance of a 5-hp, 
T-frame, 230 volts, three-phase motor with autotransformer-capacitor 
converter adjusted for balanced operation at 100% of the rated load. 

/- $ 
V 

VOLT 

y 

%0F 
RATED 

/- (p 

I 
AMP 

r- ® 

KW 

1- $ 
PFD) 

1- $ 
PF(2) 

LOAD 

L&FT 

RPU V/Z 

VOLT 

"23 
VOLT 

y,3 

VOLT 

It 

AMP 

L2 

AMP 

L3 

AMP 

K»I KWS ^IN 

VOLT 

^2N 

VOLT 

V3N 

VOLT 

KWFN KM&N 3-$ 

PF 

SLIP 

% 

EFFIO 
LENCY 

r. 

TEMF 

RISE 
°F 

ZOO B6.9 25.0 5.0 .995 1.0 15.2 1700 200 174 185 20.8 19.8 11.6 4.04 .76 100 107 114 1.82 2.0 .99 .65 5.56 73.4 

207 90 24.2 4.9 .999 .98 15.2 1719 207 190 200 ia.2 17.0 12.4 3.70 .86 109 113 IIB 1.70 1.74 U2 .68 4.5 75.8 175 

218.5 95 24.0 4.es .999 .93 15.2 I7I7 2IE 213 2/8 I5.B 14.6 13.4 3.44 1.02 123 123 125 1.59 1.54 1.54 .73 3.5 77.4 130 

230 100 23.0 4.3 1.0 .91 15.2 1749 230 229 230 14.6 14.4 14.6 3.32 1.16 133 (33 132 1.49 1.47 T.53 .77 2.83 78.6 123 

241.5 105 21.0 4.9 .999 .97 15.2 1754 242 249 244 13.4 15.2 15.6 3.22 1.32 142 141 I3B 1.37 1.46 1.70 .81 2.56 77.3 127 

252J no 20.0 5.0 .995 .99 15.2 I75B 252 26/ 251 13.2 16.6 16.4 3.20 1.40 148 148 142 1.26 1.41 I.B4 .83 2.33 76.0 136 

K> 
Table 30. Pull-up, breakdown, and locked rotor torque vs. single-phase voltage. 

V 
VOLT 

V 
%0F 
RATEL 

P.U.T. 

LBFT 

BD.T 

LBfT 

L.R.T. 

LBFT 

200 86.9 IS.5 25.2 20 

207 90.0 20.0 26.5 2/.5 

216 94.0 22.0 28.4 23.5 

226 98.3 23.5 30.2 25.5 

242 105.2 26.5 33.0 28.0 

253 IIO.O 29.0 36.4 30.5 

266 115.6 32.0 40.7 34.0 



Table 31. Effects of single-phase voltage variation on the performance 
of a 5-hp, T-frame, 230 volts, three-phase motor with a 10-
hp rotary converter. 

/—4) 
V 

VOLT 

V 
%0F 
RATED 

/ - $  

1 
AMP 

/-(J) 
KW 

/ - $  

PFd) 

1— ({î 
PF12) 

LOAD 

œ-FT 

RPM ",2 
VOLT 

'23 
VOLT 

',3 
VOLT 

4 
AMP 

h 

AMP 

h 

AMP 

KW, KW^ 

VOLT 

'^2N 

VOLT 

V3N 

VOLT 

KWIFJ K*3A, 3-$ 
PF 

SLIP 

% 

EFFIC 

lENCr 

7o 

TEMP 
RISE 
"F 

195.5 es 36.0 5.24 0.73 0.74 15.2 1707 195 199 IB9 16.6 17.6 15.0 3.24 1.36 107 I I I  no 1.50 1.70 1.43 0.8/6 5.17 70.3 143 

207 so 36.0 5.24 0.69 0.70 15.2 1724 206 203 200 15.2 16.6 14.2 3.12 1.40 114 lia 116 1.42 1.68 1.44 0835 4.22 71.0 135 

2/8.5 95 37.2 5.32 0£4 0.65 15.2 1739 217 215 210 14.2 16.4 13.8 3.08 1.40 120 125 122 1.35 1.70 1.46 0338 3.39 70.5 131 

230 100 39.8 5.44 0.58 0.59 15.2 1743 230 227 220 13.8 16.6 13.4 3.06 1.42 126 132 128 1.26 1.76 1.47 0.844 317 69.1 131 

241.5 LOS 43.6 5.72 O.S3 0.54 15.2 1746 241 239 228 13.6 17.2 13.2 3.16 1.42 131 140 133 1.23 1.87 1.49 0335 3.00 65.8 138 

253 no 48.8 5.96 0.47 0.40 15.2 1749 253 249 237 13.8 I8.0 12.8 3.20 1.36 136 146 139 1.12 1.96 1.43 0.8/8 2.80 63.3 149 

264.5 I I S  548 6.40 0.43 0.44 15.2 1751 264 258 244 I4.B 19.4 I2.B 3.36 1.32 I40 153 144 1.06 2.14 1.48 Q80C 2.75 59.0 176 
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Table 32. Pull-up, breakdown, and locked rotor torque of a 
5-hp, T-frame, 230 volts, three-phase motor vs. 
single-phase line voltage with a 10 hp rotary 
converter. 

/—$ {/ P.U.T BO.T. LJi.T 

VOLT 
%0F 
RATED 

<^FT lbfr lbfr 

IBS 82.2 l&S 23.0 20.5 

202 87.0 18.5 2sj 23.5 

2/4 93.0 20.2 28.0 25.5 

223 97.0 22.2 30.2 275 

230 100.0 23.7 32.0 29.3 

24/ I04S 27.2 35.7 32.5 

257 II 1.7 30.5 3s.7 37.5 

2 7/, 117.8 34.S 44.4 42x3 



Table 33. Performance characteristics data of a lû-hp, T-frame, design B, 
230 volts, three-phase motor on three-phase power supply. 

LOAO 

LBfT 

LOAO 
%0F 
RATED 

RPU "12 

VOLT 

^23 
VOLT 

"13 

VOLT 

h 

AMP 

^2 
4MP 

h 

AMP 

KW, "/W 
I'oz.r 

"2N 

VOLT 

"3N 

VOLT 

"ng 

VOLT 

K^IN KW2^ X^3N PF SUP 

% 

EFFIC 
lENCr 

% 

TEMP 

RISE 
"F 

O O IBOO 230 230 230 lOA 10.0 10.0 1.28 -'.00 132 133 131 16.7 ooa 0.12 O.ll 0.07I 0 0 

3 to 1796 230 230 230 I0.4 I0.4 I0.4 1.68 -0.60 132 /32 I30 16.6 0.30 0.38 0.34 0.264 0.22 73.13 

6 20 1792 230 230 230 11.2 11.2 lO.B 2.08 -0.32 131 132 130 16.6 0.56 0.60 0.60 OJ90 0.44 84.77 

9 30 1789 230 230 230 12.4 12.4 12.0 2.48 0.08 132 132 I30 16.6 0£0 0.92. 0.86 OJ524 0.6/ 86.74 

12 40 1783 230 230 230 13.6 13.6 13.6 2.96 0.40 132 132 I3l 16.6 I.IO 1.14 1.12 0.604 Q833 8831 

IS 50 1780 230 230 230 15.2 15.2 14.8 3.40 0.80 132 132 I3l 16.6 1.36 1.42 I.3B 0.682 / . / /  B9.66 55 

18 60 1777 230 230 230 17.0 17.0 16.8 3.84 1.12 132 132 131 I6.S 1.62 I.70 1.64 0.725 1.28 9024 58 

21 70 1772 230 230 230 IB.8 18.6 18.4 4.32 1.48 132 132 131 16.5 1.92 1.98 1.92 0-763 1.56 89.72 7/ 

24 80 1767 230 230 230 20.8 20.B 20.0 4.80 1.92 131 132 130 16.4 2.16 2.32 2.20 0.803 1.83 89.34 85 

27 90 1761 230 230 230 23.2 23.0 22.8 5.40 2.28 131 132 I30 16.4 2.52 2.60 2.52 0.8/8 2.17 87.68 99 

30 too 1756 230 230 230 25.6 25.6 25.2 5.96 2.64 131 132 /30 16.5 2.86 2.88 2.86 0.83/ 2.44 96.74 122 

33 no 1749 230 230 230 20.0 28.0 27.6 6.56 3.04 131 132 131 16.6 3/8 3.20 3.16 0844 233 9602 145 

36 ISO 1742 230 230 230 304 30.4 30.0 7.20 3.36 131 132 130 16.9 3.52 3.54 3.54 0.846 3.22 84.4 S 167 

39 130 1734 230 230 230 33.6 33.2 32.8 7.80 3.80 132 132 131 17.1 3L84 3.90 3.80 0.858 3.67 84.03 — 

42 140 1725 230 230 230 36.4 36.0 35.6 8.44 4./2 132 133 130 17.5 4.20 4.26 4.16 0859 4.17 82.75 

45 ISO 1716 230 230 230 39.2 383 38.4 9.20 4.52 131 132 I30 I&.0 4.60 4.62 4:52 0.86/ 4.67 8/.44 — 

KJ 
W 
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Table 34. Effects of unbalanced voltage on the performance 
of a 10-hp, T-frame, 230 volts, three-phase motor 
loaded at 80% of the rated horsepower on three-
phase line. 

I//2 

VOLT 

^23 

VOLT 

^/3 

VOLT 

UNBAL 

ANCE 

% 

RPM h 

AMP 

^2 

AMP 

^3 

AMP 

KW, KW2 ^IN 

VOLT 

^2N 

VOLT 

^3N 

VOLT 

^/V6 

VOLT 

KW2N '<^3N SLIP 

% 
BFFIC 

IBNCY 

% 

TEMP 

RISE 
°F 

230 218 210 4863 1759 20.0 28.4 17.6 4.36 2.52 126 131 117 9.5 1.64 3.20 204 2.277 86.74 124 

230 22/ 216 3.448 1760 20.0 26.4 17.6 4.48 2.28 128 132 121 II.O 1.78 3.00 2.04 2222 87.50 107 

230 224 222 2.07! 1761 20.4 23.6 18.4 4.68 2.04 129 132 125 12.1 1.98 2.68 2.08 2.166 98.54 96 

230 227 227 0.8771 1763 20.8 21.2 19.2 4.84 1.88 130 132 128 13.5 2.14 2.44 2.12 2.055 B9.07 92 

230 233 239 2.136 1765 22J0 17.6 21.6 5.16 1.60 134 132 137 17.6 2.48 1.92 224 1.944 89.87 92 

230 237 244 2.953 1769 22.4 16.0 23.2 5.24 1.48 135 133 138 19.0 2GQ 1.70 2.34 1.722 885/ 97 

Table 35. Effects of unbalanced voltage on the performance 
of a 10-hp, T-frame, 230 volts, three-phase motor 
loaded at 100% of the rated horsepower on three-
phase line. 

^12 

VOLT 

^23 

VOLT 

^13 

VOLT 

UNBAL 

ANCE 

% 

RPM II 

AMP 

•f2 

AMP 

I3 

AMP 

KW, KW2 ^IN 

VOLT 

^2N 

VOLT 

^3N 

VOLT 

^NG 

VOLT 

KWi^ KV^N SLIP 

% 

EFFIC 

lENCY 

% 

TEMpi 

RISE 
°F 

230 218 207 5.344 1750 24.4 35.6 232 5.44 3.48 125 132 116 8.2 2.18 4.12 2.68 2.777 83.07 178 

230 221 213 3.916 I7S0 24.8 33.2 23.6 5.60 3.24 127 132 120 9.0 2.34 3.84 2.70 2.777 34.0> 160 

230 224 220 2.374 1751 252 30.4 23.6 5.80 3.00 128 132 123 10.3 2.54 3.58 2.74 2.722 84.19 140 

230 226 225 1.321 1751 25.6 27.6 24.4 5.96 2.76 130 132 127 11.3 2.74 3.20 2.76 2.722 85.74 128 

230 233 237 1.571 1754 26.4 23.2 26.0 6.20 2.48 133 132 134 13.9 3.08 2.68 2.92 2.555 85.94 125 

230 236 243 2B2I 1754 27.2 20.8 27.2 6.36 2.36 134 132 138 17.0 3.28 2.40 3.00 2.555 85.94 133 

230 238 247 3.636 1756 27.6 IB.4 28.8 6.40 2.20 135 132 140 19.3 3.44 2.08 3.04 2444 87.14 140 



Table 36. Effects of unbalanced voltage on the performance of a 10-hp, U-frame 
220 volts/ three-phase motor loaded at 80% of the rated horsepower on 
three-phase line. 

y/2 

VOLT 

K23 

VOLT 

y/3 

VOLT 

UNBAl 
ANCE 
% 

RPM h 

AMP 

I2 

AMP 

J3 

AMP 

KW, KW2 *///v 

VOLT 

^2N 

VOLT 

^3N 

VOLT 

^NG 

VOLT 

XW,N KW2N f<W3N SLIP 

% 

EFFIC 
lENCY 
7o 

TEMP 
RISE 
°F 

220 2n 204 3.969 1763 20.0 283 183 4.20 2.68 120 126 115 5.0 1.62 3.12 2.12 2055 87/2 57 

220 211 206 3.611 1763 20.0 28.0 18.8 4.28 2.56 121 126 116 5.2 1.70 3.04 2.12 2055 86.99 55 

220 213 209 2304 1764 20.4 26.4 18.6 4.40 2.48 122 126 ne 5.3 }.78 2.90 2.14 2400 87.50 55 

220 215 215 1.652 1765 20.4 24.8 19.2 4.48 2.28 123 126 120 6.1 1.92 2.72 2.16 1944 97.76 51 

220 217 217 0.917 1765 21.2 223 20.0 4.68 2.08 124 126 123 7.2 2.08 2.48 2.20 1.944 6628 50 

220 22! 223 0.753 /766 22.0 20.4 20.8 4.88 L88 126 126 126 8.5 2.28 2.24 2.20 1.886 8830 49 

220 224 229 2.080 1767 22.8 18.0 22.4 5.16 1.66 128 126 130 10.5 2.52 L96 2.28 L833 8828 50 

220 228 235 3.367 1766 24.0 16.0 24.4 5.32 1.48 130 126 134  12.0 2.78 1.70 2.36 L777 87.25 52 



Table 37. Effects of unbalanced voltage on the performance of a 10-hp, U-frame, 
220 volts, three-phase motor loaded at 100% of the rated horsepower on 
three-phase line. 

"/g 

VOLT 

^23 

VOLT 

y/3 

VOLT 

UNBAL 
ANCE 
% 

RPM 

AMP 

l2 

AMP 

^3 

AMP 

KW,  KW2 ^IN 

VOLT 

^2N 

VOLT 

^3N 

VOLT 

^NG 

VOLT 

mN KWb/V KWSN SL/P  

Vo 

EFF/C 
lENCy 
7o 

TEMP 
RISE 

220  210 203 4.265 1751 24.4 34.4 24.0 5.36 3.44 /20  /26  1 /6  5./ 2.24 3.78 2.74 2.722 85./5 84 

220 211 206 3.611 175 /  24.4 33.2 24.0 5.36 3.38 12 /  126  1 /7  5.3 2.36 3.66 2.72 2.722 B6./4 78 

220 213  210 2.644 1752 24.8 32.0 24.4 5.52 3.20 122 126 1 /8  5.3 2.42 3.54 2.76 2.666 85.55 72 

220  215  2/4 L695 /752  25.2 30.0 24.4 5.60 3.00 / 23  /26  /20  6.0 2.52 3.32 2.76 2.666 36.74 68 

220 2 /7  2/7 0.9/7% / 754  25.6 28.4 24.8 5.72 2.84 124  126  /22 7.0 2.64 3./6 2.76 2.555 Q7./4 65 

220 221 223 0.753 /757  26.4 25.6 25.2 S.96 2.60 / 26  /26  /27 8.6 2.90 2.88 2S4 2.388 86.54 62 

220 224 229 2.080 1757  27.6 23.2 26.8 6.16 2.44 127  /26  /30 /0.3 3./2 2.60 2.92 2.380 86.74 67 

220 229 235 3.367 /758 28.8 20.0 28.4 6.40 2.24 130  /26 / 34  /2.0 3.52 2.24 2.96 2.333 85.16 70 



Table 38. Performance characteristics data of a 10-hp, T-frame, 230 volts, 
three-phase motor operated from a 10-hp rotary converter. 

LOAD 

LB-FT 

LOAD 

%0F 
RATED 

/— $ 
V 

/— (J) 
: 

1— (p 

KW 

1-

RF 

RPM ^12 

VOLT 

*^23 

VOLT VOLT 

: /  

AMP 

:2 

AMP 

:3 

AMP 

KM, KWg 

VOLT 

^2N 

VOLT VOLT 

^NG 

VOLT 

KVfm KWl/V SLIP 

% 
EFFIC 

lENCt 

% 

2/ 70 230 47.2 6.96 0.62 1768 230 223 220 IB.4 22.4 16.4 4.16 1.80 129 132 124 62.5 1.64 2.48 1.80 1.78 75.03 

24 80 230 50.0 7.64 0.67 1764 229 220 216 22.4 25.0 18.0 4.88 200 128 130 122 62.0 2.00 230 2.00 2.00 76.12 

27 90 230 53.6 8.80 0.70 1758 228 2/6  2 /7  24.8 27.6 19.2 5.60 2.18 128 129 I2l 61.5 2.40 3.20 2.16 233 76JC 

30 100 230 58.0 9.84 0.7I 1750 227 2 /3  2 /5  28.4 31.2 21.2 6.40 2.39 128 128 119 60.0 2.80 3.64 2.32 2.78 75.8/ 

33 no 230 62.4 I0.96 0.74 1740 227 2 /0  214 32.0 34.0 23.2 7.28 2.54 I2B 126 117 59.5 3.24 4.00 2.52 3J3 74.87 

M 
w 
00 

Table 39. Effects of single-phase voltage variation on the performance of a 
10-hp, T-frame, 230 volts, three-phase motor loaded to 100% of the 
rated horsepower on a 10-hp rotary converter. 

LOAD 

LBf r 

LO.W 

%0F 

RATED 

/—(J) 
V 

VOLT 

V 

%0F 

PATED 

l-<p 

I 
AMP 

/ — (j? 

K tV  

/ -(j> 

PF 

RPM ^12 

VOLT 

^23 

VOLT VOLT 

UNBAL 

ANCE 

% 

-r, 

AMP 

h 

AMP 

fa 

AMP 

m, KWs ^IN 

VOLT 

'̂ 2W 
VOLT VOLT 

^N6 

VOLT 

KW,^ K^2N KW3N SLIP 

% 
EFFIC 

lENCr 

% 

30 100 2020 90 60.4 laoo 0.78 1724 204 lB6 193 4.97 33.6 34.4 23.2 6.88 2.S0 116 112 104 55.5 3.12 3.64 2.24 4.22 74.60 

30 100 218.5 95 58.4 9.92 0.74 I73S 2/6  200 205 4.35 30.8 32.0 22.0 6.64 2.32 120 I20.S 112 S8.0 2.96 3.60 2.3/ 3.56 75.20 

30 100 2300 too 58 9.84 0.7I 1750 227 213 215 3.97 28.4 3 /2  21.2 6.40 2.39 126 128 119 60 2.80 3.64 2.32 2.78 75.81 

30 100 241.5 105 59.2 10.0 0.69 1750 238 225 225 3.78 26.8 30.0 20.4 6.40 2.48 134 134 124 62 2.72 3.68 2.40 2.78 74.60 

30 100 2480 |08 60.4 IO.I6 O.SS 1753 244 230 230 3.68 26.0 30.0 20.0 6.32 S.SO 137 138 128 64 2.64 3.76 2.40 2.6/ 73.43 
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Table 40. Performance characteristics data of a 10-hp, U-
frame, 220 volts, three-phase motor operated from 
an open-wye type phase converter with C = 280 
microfarads. 

LOAD 

LBfr 

LOAD 

%0F 

RATED 

RPU 1- (p 

V 

VOLT 

/—(p 

1 

AUP 

; — ()) 

KW 

/-(J) 

PF 

^^12 

VOLT 

"23 

VOLT 

"13 

VOLT 

II 

AMP 

h 

AUP 

h 

AUP 

"IN 

VOLT 

"2N 

VOUT 

"3N 

VOLT 

K'^IN KW2N ftà/v SLIP 

% 

EFFK 
lENCr 

% 

TEMP 

RISE 

"F 

12 40 1784 220 21.2 i.76 .82 220 267 133 203 10.4 26A 82 155 118 1.76 092 092 038 7&36 33 

15 SO 1780 220 24.0 4.56 .88 220 260 130 24.0 12.8 26.0 82 153 114 2.00 1.58 0.92 l.ll 81.80 33 

18 60 1775 220 27.0 5.44 .95 219 256 127 26.8 17.0 27.0 83 152 III 2.24 2.24 0.88 1.39 8223 38 

21 70 1770 220 30.0 6.24 .96 2IS 251 124 29/4 19.6 25.0 83 ISO 108 2A4 2.80 0J)7 1.67 8370 43 

24 80 1762 220 34.8 7.12 .98 218 245 120 33.2 24.4 24.4 83 148 104 2.72 3.52 034 2.11 8332 74 

Table 41. Performance characteristics data of a 10-hp, U-
frame, 220 volts, three-phase motor operated from 
an open-wye type phase converter with C = 420 
microfarads. 

LOAD 
LBFT 

LOAD 
%0F 
K4TEÛ 

RPM 1-9 
V 

VOLT 

/ - < >  

I 
AMP 

f — $ 

KW 
1— ^ 
PF 

"l2 
VOLT 

"23 
VOLT 

"L3 
VOLT 

h. 
AUP 

h 
AUP 

4 
AMP 

"IN 
VOLT 

"2N 
VOLT 

^3N 
VOLT 

KWIN X^2N SLIP 

% 

EFFIC 
£NCr 

7o 

TEMP 
RISE 
"F 

IB 60 1775 220 3a8 624 .73 220 268 150 38.0 83 40A 88 154 122 3.32 1.12 1.60 1.39 71.73 69 

21 70 1770 220 40.4 6J96 .80 220 262 146 40.0 12.0 39.6 88 152 119 3.48 1.76 1.56 1.67 75X)3 69 

24 80 1764 220 42.0 7.76 .84 219 256 141 41.6 16.0 38.6 87 ISO 114 3.68 2.36 1.50 2.00 76.91 70 

27 90 1755 220 44.4 8.64 .90 219 250 155 44.0 21.6 37.6 88 148 110 3.88 3.16 1.44 2.50 77.71 70 

30 100 1749 220 47.0 9.60 S4 218 249 129 46.4 27.4 36.6 87 147 ICS 4.04 3.96 1.36 233 77.71 73 

33 no 1744 220 4B3 10.18 .95 220 248 125 48.0 30.8 37.2 86 ISO 106 4.12 4£0 1.30 3.11 80.61 81 

36 120 1731 220 52.0 11.02 SB 220 240 120 50.4 3SjO 36.4 86 149 104 4£4 5.20 1.24 333 81.23 102 



Table 42. Performance characteristics data of a 10-hp, T-frame^ 230 volts, 
three-phase motor operated from an open-wye type phase converter 
with C = 280 microfarads. 

LCMO 

IBTT 

UM 
%0F 
HATED 

RPM / - •  
y 

VOLT 

/ —  

/  
AUP 

/ - •  

KW PF 
^12 

VOLT 
"23 

I'OLT 

1^3 

yOLT 

I,' 

AUP 
'2 

AMP 
H 

AUP 

«ON 

VOLT rai.r fotr 

X^IN '̂ 2W SL/P 

% 

erne 

lENCr 

% 

rewp 

mse 
"F 

le eo nn 230 27.4 5.44 .90 229 276 M3 27.2 14.4 28.0 87 /6 /  123 2.32 1.92 LOO 1.55 8228 115 

2/ TO 1706 230 30.0 6.92 .95 229 270 137 29.6 17.6 27.6 87 159 119 2.52 2JB0 1.00 139 82.62 117 

24 80 J 759 230 33l2 7.20 .97 228 265 133 32.4 22.0 26.8 87 ISB 116 2J'6 332 .96 2£8 92.90 124 

27 90 1749 230 3Z2 8.32 .09 228 260 127 36.4 28.0 26.0 87 156 no 3.04 4.16 .92 2JB3 B0.70 149 

Table 43. Performance characteristics of a 10-hp, T-frame, 230 volts, 
three-phase motor operated from an open-wye type phase con­
verter with C = 420 microfarads. 

LOAD 

'.BFJ 

LCMO 
%0F 

RPU f — $ 
V 

A)LT 
; 
AUP 

/-• 

KIR 

/-4> *)2 

ratr 

"23 
votr 

"/J 
VOLT 

H 
AUP 

H 
AUP 

'3 
AUP 

''/N 
/Oi-r 

^2N 
VOLT VOLT 

"ÏN SLIP 

% 
BT7C 
CMCf 
% 

TEUP 
RISE 
°F 

24 80 1767 230 43.6 7.84 .77 229 284 160 43J6 6B 43.6 90 160 I30 184 1.88 /.72 /.83 76V2 208 

27 90 1761 230 452 8.40 .8/ 229 280 156 44.8 I6.0 412 90 ISI  (28 4.00 2AO /.72 2J7 79.93 209 

30 too I7S4 230 47.6 9.44 .89 228 272 149 47.2 20.0 4 /6  90 158 122 4.20 336 /.60 2.55 7942 2 /9  

33 no 1742 230 sao ro.48 .93 227 265 141 456 ZBJO 40.4 69 156 117 4.40 4.24 /.52 422 78.* 222 

38 I20 1721 230 S4X} /1.92 .97 227 258 131 53J6 3S.4 39.2 88 154 ni 4.60 5.56 I.40 4.39 7SJO -

to 
iî  
o 
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